Advertisement

12V 5A 60W 反激式开关电源设计资料及原理图、PCB和mathcad参数计算

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本资源提供12V 5A 60W反激式开关电源的设计资料,包括详细原理图、PCB布局以及使用Mathcad进行的参数计算,适用于电力电子工程师和技术爱好者深入学习与实践。 反激式开关电源设计 12V 5A 60W 原理图及PCB 详细计算每个元件参数: - 反激变压器参数自动计算(连续模式CCM与断续模式DCM) - 计算原边和副边的匝数 - 算出原边和副边电感量 - 选择合适的变压器磁芯和线径 - 分析三种工作模式下的变压器性能 - 输入电容选取 - 压敏电阻计算 - 保险丝参数选型计算 - 整流桥选取 - 输出电容的确定方法 - RCD吸收回路设计与分析

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 12V 5A 60W PCBmathcad
    优质
    本资源提供12V 5A 60W反激式开关电源的设计资料,包括详细原理图、PCB布局以及使用Mathcad进行的参数计算,适用于电力电子工程师和技术爱好者深入学习与实践。 反激式开关电源设计 12V 5A 60W 原理图及PCB 详细计算每个元件参数: - 反激变压器参数自动计算(连续模式CCM与断续模式DCM) - 计算原边和副边的匝数 - 算出原边和副边电感量 - 选择合适的变压器磁芯和线径 - 分析三种工作模式下的变压器性能 - 输入电容选取 - 压敏电阻计算 - 保险丝参数选型计算 - 整流桥选取 - 输出电容的确定方法 - RCD吸收回路设计与分析
  • 12V 5A 60W PCBmathcad
    优质
    本资源提供了一套详细的12V 5A(60W)反激式开关电源的设计方案,包括电路原理图、PCB布局以及使用Mathcad进行参数计算的文档。适合电子工程师学习与参考。 反激式开关电源设计:12V 5A(60W)原理图及PCB 详细计算每个元件的参数: - 反激变压器参数自动计算(Mathcad),包括连续模式(CCM) 和断续模式(DCM) - 原边匝数和副边匝数计算 - 原边电感量和副边电感量计算 - 磁芯选择与线径选取 - 三种工作模式下的变压器参数计算(CCM、DCM及临界导通模式) - 输入电容的选择 - 压敏电阻的计算 - 保险丝选型参数计算 - 整流桥的选择 - 输出电容的计算 - RCD吸收回路的设计与分析
  • UC3842312V 2.5APCB学习
    优质
    本资料提供UC38423芯片实现12V 2.5A反激式开关电源的设计方案,包含详细电路原理图和PCB布局图,适合初学者深入理解开关电源的工作原理与实践应用。 UC38423反激式开关电源是一种常见的电源转换器设计,在电子设备供电领域广泛应用。本段落主要介绍这种类型的电源设计的核心知识点,包括电路原理、PCB布局以及反激变换器的工作方式。 作为一款高性能电流模式控制器,UC38423专为离线电源和直流-直流转换器而设。它集成了振荡器、比较器、误差放大器、电流检测及保护功能,提供了经济高效的解决方案。在12V 2.5A的电源设计中,UC38423作为核心控制器负责调节并保持输出电压稳定。 反激式变换器是一种开关电源架构,在输入电压上升时关闭开关以储存能量于变压器磁芯,并在下降时打开开关通过变压器将存储的能量反向传输至输出端。这种设计允许单一的输入和输出之间的电压转换,同时还能隔离输入与输出,提高系统的安全性。 在PCB设计过程中,飞回(Flyback)拓扑结构需注意以下几点: 1. 布局:为了减少电磁干扰(EMI),应将噪声敏感元件与开关元件分开布置,并确保信号线尽可能短直。 2. 热设计:由于UC38423和功率开关管会产生热量,需要考虑散热路径并合理分配元器件间距以保证热平衡。 3. 变压器设计:反激变压器的设计至关重要。需考虑磁芯选择、绕组比、漏感及初级次级隔离等因素,确保高效能与稳定性。 4. 保护机制:包括过流保护、过温保护和短路保护等措施,以防止电源在异常情况下损坏。 学习资料可能包含以下内容: 1. UC38423的数据手册解释其内部结构和操作模式; 2. 反激式开关电源的理论讲解,涵盖工作原理、控制策略及环路补偿; 3. PCB布局与布线指南指导如何创建符合EMC标准的电路板; 4. 变压器设计指南介绍磁芯选择、绕组计算等步骤; 5. 电路仿真模型和实际测试数据帮助理解理论与实践差异; 6. 故障诊断及排除方法解决设计与应用中的常见问题。 通过深入学习这些资料,可以掌握UC38423反激式开关电源12V2.5A的设计精髓,并进一步提升在电源设计领域的专业技能。无论是课程学习还是实际项目开发,上述知识都将对你的职业生涯产生积极影响。
  • 5A 12V
    优质
    这款5A 12V反激式开关电源是一款高效、稳定的电源解决方案,适用于多种电子设备。它采用先进的反激技术,提供可靠且安全的电力供应,确保设备正常运行。 反激式开关电源是一种常见的电源转换器类型,在计算机、通信设备及家用电器等领域广泛应用。本段落讨论的是由成都启达科技有限公司设计的12V5A反激式开关电源方案,包括电路原理图、PCB布局以及元器件清单等详细内容。 **一、电路原理** 该设计方案的核心是使用CR6850芯片作为开关控制器,负责调节和控制电源的工作状态。在工作过程中,当晶体管Q1导通时,变压器储存能量;而在断开状态下,通过次级绕组释放能量到负载端完成电压转换。 - 电容C1、C2、C3等用于滤波及稳定输出电压; - L1为储能元件,并参与实现升压或降压功能; - D1至D5二极管负责整流和保护,确保电流单向流动。其中D4(FR107)与D5(1N4007)作为续流二极管防止电感在开关关闭时产生过电压现象。 - 初级绕组和次级绕组的比值决定了变压器输出端的最终电压; - 电阻R1、R2等及电容C8、C9构成反馈环路,调整并稳定输出电压。 **二、PCB布局** 合理的PCB布局对于提高开关电源的工作效率以及减少电磁干扰(EMI)至关重要。TopOverlay表示顶层元件分布;BottomLayer定义底层走线路径;BottomOverlay则为底层覆盖层。通过优化信号传输和功率分配来确保最佳性能表现,同时采用屏蔽与接地策略降低高频器件间的耦合。 **三、元器件清单** 设计中使用了多种电子组件如电解电容(C10463V)、薄膜电容(C1206 102100V)等。这些元件的选择基于其电气特性以及温度耐受性,以确保满足电源的输出需求和系统稳定性。 **四、设计参数** 除了上述硬件配置外,还需考虑开关频率、变压器匝比及输入电压范围等因素来优化性能表现,并设定效率目标与安全余量保证设备在各种负载条件下均能稳定工作。此外,在热管理方面也需采取措施防止过温问题的发生。 综上所述,该12V5A反激式电源方案提供了一个全面的设计实例,涵盖了电路原理、PCB布局及元器件选择等多个环节的知识点。这对学习者来说是一个深入了解和掌握此类电源系统设计的宝贵资源。
  • 60W12V-5A方案.pdf
    优质
    本PDF文档提供了一套详细的设计方案,用于开发一款输出功率为60瓦特、电压12伏特和电流5安培的开关电源。文档内含电路原理图与设计要点,适用于电子工程师和技术爱好者参考学习。 输出功率60W的开关电源设计(12V-5A)
  • 60W12V-5A详解
    优质
    本文章详细解析了60W开关电源设计过程,涵盖了从电路原理到实物制作的各项步骤,旨在为电子爱好者及工程师提供全面的技术指导。 ### 输出功率60W(12V-5A)的开关电源设计 #### 一、设计概述 本段落档详细介绍了一个输出功率为60W(12V-5A)的反激式开关电源设计方案,涵盖电路原理图、PCB布局、元器件清单以及变压器设计等内容。该电源适用于需要稳定且高效电源供应的应用场景,如工业设备和通信设备等。 #### 二、电路原理 本设计采用反激式变换器结构,核心元件包括控制器IC(U1)、主开关管(Q1)、整流桥(B1)及其他辅助元件。其中,控制器IC负责控制主开关管的导通与截止以实现能量转换。具体电路分析如下: - **输入滤波电路**:由保险丝F1、电容C1和C2组成,用于去除电网中的高频干扰信号。 - **整流滤波单元**:采用桥式整流器B1将交流电转换为直流电,并通过电容C3进行滤波以形成稳定的直流电压。 - **开关单元**:主开关管Q1在控制器IC的驱动下执行高频切换操作,通过变压器T1将能量传输到次级侧。 - **反馈回路**:利用电阻R16和R15构成分压网络检测输出电压,并将其反馈至控制器IC的FB引脚以实现闭环控制。 - **输出整流与滤波**:在次级侧,通过二极管D1进行整流后经电容C6和C7进一步滤波处理,确保输出电压稳定性。 #### 三、PCB Layout 设计 合理的PCB布局对于开关电源的性能至关重要。本设计采用多层板结构,并注意以下关键点: - **顶层(Top Overlay)**:用于标注元器件位置和丝印信息。 - **底层(Bottom Layer)**:用于放置元器件及走线。 - **底层丝印层(Bottom Overlay)**:提供元件与线路的标识。 在PCB布局时,应特别注意: - 高频信号线如控制器IC的时钟信号、主开关管栅极驱动等应尽可能短且远离敏感电路。 - 变压器T1需靠近主开关管Q1和输出整流二极管D1以减少寄生参数影响。 - 输入滤波电容C1、C2及输出滤波电容C6、C7应尽量接近相应的节点,以便降低噪声干扰。 - 采用大面积接地平面,并确保所有地线良好连接至该平面。 #### 四、元器件清单 根据提供的元器件清单,列出关键元件及其作用: - **C1和C2**:用于输入端滤波的X电容和Y电容,满足EMC标准。 - **C3**:整流桥之后提供稳定的直流电压。 - **B1**:将交流电转换为直流电的桥式整流器。 - **Q1**:执行高频切换操作的主要开关管,通常选用高频率、低损耗MOSFET或IGBT。 - **D1**:输出端快速恢复型或肖特基二极管以减少开关损耗。 - **T1**:作为核心部件的变压器,其设计直接影响电源转换效率和稳定性。 #### 五、变压器设计 变压器是决定开关电源性能的关键组件。本设计中的反激式结构变压器主要参数如下: - **初级绕组**:接收主开关管Q1产生的高频脉冲信号,并将其转化为磁场能量。 - **次级绕组**:当主开关管关闭时,释放初级绕组中存储的磁场能量并转换为电能输出。 - **磁芯材料**:通常使用高导磁率铁氧体以提高效率。 - **绕组设计**:根据所需电压计算确定初级与次级之间的匝数比。 #### 六、总结 本段落详细介绍了60W(12V-5A)反激式开关电源的设计过程,包括电路原理、PCB布局、元器件清单及变压器设计等方面。通过深入分析这些内容,可以帮助读者更好地理解开关电源的工作原理和技术要点,并为实际应用提供参考和支持。
  • 12V 5A ACDCPCB文件BOM.zip
    优质
    本资源包含一款12V 5A AC/DC开关电源的设计资料,内含详细原理图、PCB布局文件以及物料清单(BOM),适用于电子工程师学习与开发。 该设备适用于12V5A规格的显示器、打印机、摄像头等多种场合供电,并可替代其他如12V1A, 12V2A 和 12V4A 的电源。 工作环境要求如下: - 工作温度范围:从 -10℃ 到 +40℃ - 贮存温度范围:从 -40℃ 到 +70℃ - 最大相对湿度(在40±2°C条件下)不超过90% - 存储时的最高相对湿度为 95% ±3% 交流输入参数: - 单相电压:100Vac 至 240Vac - 频率范围:47Hz 到63Hz - 效率达到或超过80% 直流输出特性: - 输出电压在11.6V到12.6V之间,最大电流为5A - 最大功率不超过60W - 稳压精度小于±1% - 负载效应和源效应均低于 ± 1% 和 ±0.3%,温度系数则少于 ±0.1% - 在负载变化后的恢复时间不超过200微秒,启动过冲幅度也控制在 <±10%,同时启动冲击电流不高于额定值的150% - 平衡噪声和峰值噪声分别小于 2mV 和 100mV 保护功能包括: - 过压保护 - 短路保护 此外,其可靠性非常高(平均无故障时间MTBF≥1*10^5小时),绝缘电阻测试要求在湿热条件下交流输入端对直流输出端的阻值至少为2兆欧姆,在其他情况下则应大于或等于25兆欧姆。另外,设备还必须能够经受住施加于其上的2KV(漏电流限制为 5mA)的耐压测试,并且在持续一分钟内不应发生任何电气击穿、飞弧或者电晕现象。
  • 整套(含PCB
    优质
    本资料详尽介绍了反激式开关电源的设计与应用,包含完整的电路原理图、PCB布局文件以及设计所需的全部计算公式,是学习和开发开关电源的实用资源。 反激式开关电源全套每一个元件参数计算详细教程:以输出12V 5A(60W)的反激式开关电源为例,包括PCB设计及原理图。该教程涵盖变压器参数自动计算、连续模式CCM和断续模式DCM下的变压器参数计算方法;原边匝数与副边匝数的确定;原边电感量和副边电感量的具体数值;磁芯的选择以及线径选取等关键步骤,还包含输入电容选择、压敏电阻计算、保险丝选型及整流桥选取等内容。此外,教程还会详细讲解输出电容计算方法,并对RCD吸收回路进行深入分析。 该资料非常实用且全面,购买后会立即发送电子文档给您。同时还将附赠一本经典硬件学习视频教程(与本设计无关),其中包含开关电源的相关知识和技巧介绍。
  • 60W (12V-5A) 详解(含PCB布局、元件清单变压器
    优质
    本教程详细介绍60W开关电源的设计过程,包括电路原理、PCB布局技巧、所需元器件清单以及关键的变压器设计方法。 设计一个输出功率为60W的12V-5A开关电源,包括原理图、PCB布局、元件清单以及变压器的设计。
  • 变压器自动(CCMDCM模
    优质
    本资料深入解析反激式开关电源的设计原理,并提供了一套用于计算不同工作模式下反激变压器参数的工具,涵盖连续导通模式(CCM)与不连续导通模式(DCM),助力工程师优化电源设计。 反激式开关电源全套设计资料包括反激变压器参数自动计算,在连续模式(CCM)和断续模式(DCM)下进行相关计算。 - 变压器参数计算: - 原边匝数计算 - 副边匝数计算 - 原边电感量计算 - 副边电感量计算 - 磁芯选取及线径选择: - 变压器磁芯选取 - 变压器线径选取 - 工作模式分析:变压器工作在三种不同的模式下进行详细计算。 - 元件选型与参数设定: - 输入电容选取 - 压敏电阻计算 - 保险丝参数选型计算 - 整流桥选择: - 输出电容设计: - RCD吸收回路分析及设计: