本文深入剖析了三种不同的峰值检波电路设计,通过详细的电路图解和原理说明,帮助读者理解其工作机制与应用场景。
峰值检波电路有多种不同的版本,但其基本原理保持不变。许多现代的峰值检波电路都是从最基础的设计逐步改进而来的。峰值检波的核心机制是利用电容充放电特性来工作。
当交流信号处于正半周期时,二极管D相当于短路状态,使得信号可以直接作用在电容器上进行充电。随着电压上升至最大值(即峰值),此时由于后续的交流电压开始下降,电阻上的维持电压不再足够强,导致电容通过电阻R缓慢放电。
进入负半周期后,因为二极管处于截止状态,根据电容器特性不能瞬间改变其两端电压,所以它会继续持有之前的正向充电残留电量。同时,在这一阶段中电容也会持续地通过电阻进行慢速的释放过程。
实际应用中的峰值检波电路设计通常与均值检测器类似,并且要特别注意消除二极管压降对测量结果的影响。当输入电压Vi高于输出电压Vo时,比较放大器A1会提供正电源信号,使得D1不工作而使D2导通;此时电容C快速充电直至达到Vi的水平。相反地,在Vi低于Vo的情况下,A1则给出负向电源指令促使二极管D1开启并阻止了D2的操作,由此导致通过电阻Rc缓慢释放电容器上的电量。
理论上讲,基于二极管无源半波整流机制设计出来的交流电压峰值检测电路可以采用与均值检波器完全相同的结构形式。