Advertisement

基于W5500和Yeelink的远程灯光控制系统设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目旨在设计并实现一个结合了W5500网络芯片与Yeelink物联网平台的远程灯光控制方案。该系统能够通过互联网远程操控家中的照明设备,提供便捷、智能的生活体验。 在W5500EVB端连接LED灯,并通过W5500与网络建立连接;随后,在物联网云平台Yeelink上添加设备并与其建立连接。系统会将读取到的温度和湿度数据上传至Yeelink,从而可以通过网络随时查看温度和湿度的变化。此外,用户还可以登录Yeelink账号,使用手机等移动设备随时随地监控这些变化。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • W5500Yeelink
    优质
    本项目旨在设计并实现一个结合了W5500网络芯片与Yeelink物联网平台的远程灯光控制方案。该系统能够通过互联网远程操控家中的照明设备,提供便捷、智能的生活体验。 在W5500EVB端连接LED灯,并通过W5500与网络建立连接;随后,在物联网云平台Yeelink上添加设备并与其建立连接。系统会将读取到的温度和湿度数据上传至Yeelink,从而可以通过网络随时查看温度和湿度的变化。此外,用户还可以登录Yeelink账号,使用手机等移动设备随时随地监控这些变化。
  • MPPT独立伏路
    优质
    本项目旨在设计一种基于最大功率点跟踪(MPPT)技术的独立光伏路灯控制系统。该系统能够高效利用太阳能,自动调节工作状态以确保路灯稳定运行,并延长电池寿命,为城市的绿色照明提供可靠解决方案。 论文探讨了独立光伏系统中的铅酸蓄电池最大功率跟踪算法以及ARM μC/OS-II操作系统在该系统中的应用。具体内容包括: 5.1.4 变步长寻优法,第49至51页。 5.2 基于ARM7TDMI的嵌入式操作系统μC/OS-II的移植,第51至63页。 此外,论文还研究了基于μC/OS-Ⅱ内核的设备驱动程序框架。
  • CAN总线汽车
    优质
    本项目设计了一套基于CAN总线技术的智能汽车灯光控制方案,旨在提高车辆灯光系统的效率和安全性。通过集成先进的通信协议,实现了对前照灯、转向灯及内部照明等组件的精准操控与管理,优化了驾驶体验并增强了夜间行车的安全保障。 本段落提出了一种基于CAN总线的车灯控制系统设计方案,并详细介绍了该系统的硬件设计与软件设计。文章分别对系统整体结构、硬件配置以及软件功能进行了详细的阐述。
  • 软件作业(含代码与报告)
    优质
    本课程作业涵盖了远程灯光控制系统的设计与实现,包括软件开发和文档编写。系统通过网络实现对家庭或办公室内灯光的智能控制,旨在培养学生在物联网领域的实践能力。作业成果包含完整源代码及技术报告。 本项目要求通过本地端控制,在远端模拟一个灯泡,并实现对远端灯光的闪烁、亮灭等功能。
  • STM32空调.zip
    优质
    本项目旨在设计并实现一个基于STM32微控制器的远程空调控制系统,通过Wi-Fi连接手机APP,用户可以实时监控和控制空调运行状态。 基于STM32的远程空调控制系统的设计与实现包含了硬件电路设计、软件编程以及系统的调试过程。该系统利用了STM32微控制器的强大功能,实现了对家用空调设备的远程控制,提高了用户的使用便捷性和舒适度。文档中详细介绍了各个模块的功能及其实现方法,并提供了完整的代码示例和相关技术资料供学习参考。
  • 供暖节能
    优质
    本项目旨在设计一种基于远程控制技术的供暖节能系统,通过智能化管理大幅减少能源消耗,提高供暖效率和用户舒适度。 本段落设计了一种基于GSM网络的供暖节能系统,采用电动二通球阀替代传统手动阀门,并利用单片机实现暖气开关的智能控制。通过设置单片机定时器来确定暖气的工作时间,在不需要供暖的时间段内使暖气保持低温运行状态;而在需要供暖的时间段,则将暖气温度控制在预设范围内。
  • Multisim 11彩色与仿真
    优质
    本项目运用Multisim 11软件,对一种能够实现多彩变换效果的智能灯光控制电路进行设计和仿真分析。通过模拟实验验证设计方案的有效性和可靠性,探索电子技术在家居照明中的创新应用。 使用数字集成电路控制方法设计一个彩灯循环控制系统,选取计数器74LS161与移位寄存器74LS194,并结合Multisim 11仿真软件进行电路的设计、验证及优化工作。本段落详细介绍两种方案的思路和具体实现过程,包括各个单元电路的工作原理以及整体系统的构成方式。 第一种设计方案将利用计数器芯片74LS161生成循环控制信号,通过移位寄存器74LS194来驱动彩灯的不同状态变化。第二种方案则尝试采用不同的逻辑连接方法以实现更为复杂的灯光变换效果。每一种方案都将在Multisim 11仿真软件中进行详细测试与分析,验证设计的正确性。 结合两种设计方案并利用仿真工具可以深入理解74LS161和74LS194这两款集成电路的功能特性及其在实际应用中的灵活性,这有助于读者掌握如何根据不同的需求构建更多样化、更复杂的彩灯控制系统。
  • 舞台模拟
    优质
    本项目聚焦于舞台灯光控制系统的设计与实现,采用先进的编程技术进行模拟操作,旨在提升演出效果和简化后台操作流程。 本资源为模拟舞台灯光控制系统设计文件(包括源码、论文及设计框图)。该系统利用M3内核控制RGB彩灯阵列,并借鉴点阵的控制方法定位矩阵中的彩灯,每三路DAC分别负责一行彩灯的R、G、B配色比。通过8组DAC来调节整个舞台上的RGB彩灯阵列发出我们所需的任何颜色光线。此外,系统还能够调整不同行列中RGB彩灯变换的速度和规律,从而实现对灯光闪烁频率及变化模式的有效控制。
  • 优质
    灯光控制系统是一种通过自动化技术来控制和调节照明设备的技术或系统。它可以实现对灯光的颜色、亮度、开关等进行智能调控,广泛应用于家庭、办公场所及公共设施中,以达到节能、美化环境以及提升使用体验的目的。 彩灯控制系统是一种基于微机原理的系统设计用于控制彩灯的各种显示方式及状态变化。本系统的构建依托于唐都仪器的微机实验平台,并通过软硬件结合的方式实现了对彩灯的自动化管理。 首先,微机原理是计算机科学与电子工程领域中的基础理论之一,它涵盖了微处理器的基本结构、指令系统、存储器组织以及输入输出和中断处理机制等内容。其次,唐都仪器提供的微机原理实验平台为教学及实践提供了全面的支持环境,包括了硬件设备如处理器、内存模块等。 在设计彩灯控制系统时,既需要考虑硬件部分的设计(例如:微控制器的选择与配置),也需要关注软件方面的编程工作以确保系统的功能性;同时,在系统中还会应用到诸如软件延时和硬件延时这样的技术手段来优化性能。此外,中断处理机制也是提高效率的关键因素之一。 为了提升用户界面的友好性,通常会在控制系统内加入7段LED数码管作为显示设备使用数字或字符信息反馈给操作者当前设定的状态编号等重要数据;而TDN86/88型多功能微机实验平台则为开发人员提供了更广阔的探索空间和实践机会。 最后值得注意的是,在构建彩灯控制系统的整个过程中,都会涉及到一些重要的概念和技术手段如:微机原理与接口技术、信息工程系相关知识的应用等。这些理论基础对于深入理解系统架构及其工作流程至关重要,并且是实现高效可靠控制系统的基础条件之一。