Advertisement

STM32F103利用IIC读取MPU9250并通过DMP融合计算欧拉角

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目介绍如何使用STM32F103芯片通过IIC接口读取MPU9250传感器数据,并运用其内置DMP功能进行数据融合,以计算并输出准确的欧拉角。 使用STM32F103通过IIC读取MPU9250,并利用DMP融合得到欧拉角。在显示Pitch时,代码如下: ``` printf(Pitch:); temp = Pitch; printf(%f, temp); printf(度 ); ```

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32F103IICMPU9250DMP
    优质
    本项目介绍如何使用STM32F103芯片通过IIC接口读取MPU9250传感器数据,并运用其内置DMP功能进行数据融合,以计算并输出准确的欧拉角。 使用STM32F103通过IIC读取MPU9250,并利用DMP融合得到欧拉角。在显示Pitch时,代码如下: ``` printf(Pitch:); temp = Pitch; printf(%f, temp); printf(度 ); ```
  • STM32DMP
    优质
    本项目介绍如何使用STM32微控制器结合DMP(数字运动处理器)技术来高效地读取并处理传感器数据,以获取设备的姿态信息——即欧拉角。该方法提供了一种精确且低功耗的方式来实现复杂的姿态跟踪应用。 这段文字描述了一个使用STM32F103芯片并通过DMP库函数读取6050传感器欧拉角的程序。
  • 使STM32CubeMX软件IICMPU6050 DMP数据,串口1输出
    优质
    本项目利用STM32CubeMX配置STM32微控制器,通过IIC总线接口读取MPU6050姿态传感器的DMP数据,经处理后计算出欧拉角并通过串口1传输。 使用Cubemx生成基于HAL库的STM32F103C8T6工程,并通过IIC读取MPU6050传感器数据,利用DMP计算欧拉角并通过串口1(波特率15200)打印pitch值。当前项目已经完成基础功能测试并可正常使用。项目的IIC驱动程序移植自野火平台,可通过调整四个宏定义实现引脚更换;而MPU6050和DMP的代码则来自原子库。如果遇到问题欢迎交流探讨。
  • MPU6050陀螺仪内置DMP
    优质
    本项目详细介绍如何使用MPU6050传感器内部的DMP功能来计算并读取欧拉角数据,实现精准的姿态检测和控制。 通过简单修改I2C接口,即可将其移植到单片机或Linux上,并且已经成功测试。
  • Verilog编程FPGAIICMPU6050数据_Verilog MPU6050、MPU9250源码
    优质
    本项目介绍如何使用Verilog语言在FPGA上实现IIC协议,以读取MPU6050(及兼容的MPU9250)传感器的数据。提供详细的代码示例与注释,适用于硬件设计初学者和进阶者。 使用Verilog HDL语言编写IIC协议,在FPGA上读取MPU6050的数据。其他通过IIC接口进行数据读取的器件操作方法类似。
  • 旋转矩阵
    优质
    本文章介绍了如何使用旋转矩阵来推导和计算物体在三维空间中的姿态角度——欧拉角。通过具体步骤解析了从旋转矩阵到欧拉角转换的方法。 通过旋转矩阵求欧拉角可以用于从已知的旋转矩阵推算出旋转角度。这种方法对于任何形式的旋转矩阵都有一定的参考价值。
  • 旋转矩阵
    优质
    本文介绍了如何利用旋转矩阵来推导并计算出欧拉角的方法,详细解析了二者之间的转换关系及其应用。 通过旋转矩阵可以计算绕X轴、Y轴和Z轴的旋转角度,直接代入公式求解即可。这种方法适用于3*3旋转矩阵的计算。
  • 使STM32F1IIC1MPU6050和IIC2MPU9250的数据,卡尔曼滤波pitch、roll和yaw度及指南...
    优质
    本项目基于STM32F1微控制器,运用IIC总线分别连接MPU6050与MPU9250传感器,采集加速度和陀螺仪数据,结合卡尔曼滤波算法精确计算pitch、roll和yaw角度,并实现指南针功能。 使用STM32F1通过IIC1读取MPU6050的数据,并通过IIC2读取9250的数据。然后利用卡尔曼滤波算法计算出pitch、roll以及yaw的角度,同时获取指南针角度。
  • MPU9250 DMPIIC驱动
    优质
    本简介主要介绍如何使用MPU9250传感器进行DMP(设备运动处理)和IIC(集成电路间通信)驱动开发,适用于需要精准姿态感应的应用。 MPU9250是由InvenSense公司制造的一款高性能微机电系统(MEMS)传感器,集成了三轴陀螺仪、三轴加速度计以及三轴磁力计,能够提供全方位的运动数据,并广泛应用于无人机、机器人、智能手机和平板电脑等设备中。IIC是一种串行通信协议,适用于低速设备间的通信;MPU9250可以通过IIC接口与主控芯片进行数据交换。 DMP(数字运动处理器)是MPU9250的一个关键特性,它是一个专为处理运动数据而设计的硬件加速器。它可以执行复杂的算法如姿态解算、传感器融合等任务,并减少主控MCU的计算负载,提高系统的实时性和效率。通过使用DMP,开发者可以迅速获取准确的姿态信息(例如欧拉角和四元数),而不必自己编写滤波及数据融合算法。 在利用IIC驱动MPU9250时,首先要配置传感器的工作模式与参数设置(如采样率、量程等)。接着通过发送命令读取或写入传感器的数据来实现通信。按照IIC协议规定的起始位、地址位、数据位和停止位的传输顺序进行操作。 实际应用中,为了有效利用MPU9250的功能,需要编写相应的驱动程序。这通常包括初始化IIC总线、设置MPU9250寄存器值、启用DMP功能以及定时读取并解析DMP输出的数据。根据不同单片机平台(如Arduino或STM32),所需使用的编程语言和实现方法可能有所不同。 在编写驱动程序时,需要注意以下几点: 1. 合理设置IIC通信的时钟频率以确保数据传输稳定且高效。 2. 正确配置中断与数据就绪信号,以便及时处理新的传感器信息。 3. 在使用DMP功能前仔细调整相关参数,因为不同的设定会影响输出结果的质量和延迟时间。 4. 应用适当的滤波算法(如互补滤波或卡尔曼滤波)来提升姿态估计的准确性和稳定性。 硬件设计方面需要考虑电源管理、信号噪声抑制以及IIC总线抗干扰措施等。相关的电路原理图、PCB布局文件及库文件是开发过程中不可或缺的重要资料,它们有助于实现MPU9250与系统的物理连接和驱动程序集成。 总之,理解并掌握MPU9250的DMP功能及其IIC通信机制对于构建高性能运动追踪系统至关重要。通过精心设计的软件架构能够充分发挥该传感器的优势,并为各类智能设备提供精确可靠的运动数据支持。
  • 基于STM32和MPU6050的遥控平衡车,DMP
    优质
    本项目设计了一款基于STM32微控制器与MPU6050传感器的遥控平衡车系统,采用DMP算法精确计算欧拉角,实现车辆姿态精准控制。 本人辛勤所写,要的分数有点高。不过确实物有所值,因为这是两个程序,并且包括遥控器的程序也提供了。配有视频讲解,有问题可以在群里讨论,在视频最后会提供群号。现在正在用卡尔曼或者互补滤波解算角度,缩短控制周期。算了,感兴趣的话群里见。