Advertisement

CN1185锂电池功率检测器的设计及原理图/PCB源文件-电路方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本设计提供了CN1185锂电池功率检测器的详细原理与实现方法,包括全面的原理图和PCB源文件。适合深入研究电池管理系统的技术人员参考使用。 该设计提供的是具有1050mAh 3.7V CNI185锂电池功率检测器的设计方案,包括原理图、PCB源文件及相关资料的下载。 CN1185锂电池功率检测器主要由两部分构成:一是容量为1050 mAh的锂离子电池;二是用于测量该电池电源的功率检测器。这款锂离子电池特别轻薄且性价比高,其标准输出电压是3.8V,并可通过专用充电器进行充电,最大输入电流可达5100mA,最大输入电压4.2V。此电池配备预先连接好的JST 2.0插头,方便安装和拆卸。另外它还内置了过流保护机制来防止输出短路。 当该CN1185锂电池功率检测器与锂离子电池相连时,板载的四个LED灯会以百分比形式显示剩余电量(分别为0-25%,26-50%,51-75%,以及76%-100%)。如果错误地插入了连接器,则另一个指示灯将会亮起。该检测设备支持3至4.2伏的输入电压范围,并且在电路中设有短路保护功能,确保安全使用。 此外,CN1185锂电池功率检测器通过不同类型的JST插座(包括两个电池焊盘),能够适应各种连接器类型和不同的电池需求。这使得该设备具有很高的灵活性与实用性。 需要注意的是: - 当输入电压超过9伏时可能会损坏电池电量检测器。 - 在充电过程中应避免使用电池,以确保安全操作。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • CN1185/PCB-
    优质
    本设计提供了CN1185锂电池功率检测器的详细原理与实现方法,包括全面的原理图和PCB源文件。适合深入研究电池管理系统的技术人员参考使用。 该设计提供的是具有1050mAh 3.7V CNI185锂电池功率检测器的设计方案,包括原理图、PCB源文件及相关资料的下载。 CN1185锂电池功率检测器主要由两部分构成:一是容量为1050 mAh的锂离子电池;二是用于测量该电池电源的功率检测器。这款锂离子电池特别轻薄且性价比高,其标准输出电压是3.8V,并可通过专用充电器进行充电,最大输入电流可达5100mA,最大输入电压4.2V。此电池配备预先连接好的JST 2.0插头,方便安装和拆卸。另外它还内置了过流保护机制来防止输出短路。 当该CN1185锂电池功率检测器与锂离子电池相连时,板载的四个LED灯会以百分比形式显示剩余电量(分别为0-25%,26-50%,51-75%,以及76%-100%)。如果错误地插入了连接器,则另一个指示灯将会亮起。该检测设备支持3至4.2伏的输入电压范围,并且在电路中设有短路保护功能,确保安全使用。 此外,CN1185锂电池功率检测器通过不同类型的JST插座(包括两个电池焊盘),能够适应各种连接器类型和不同的电池需求。这使得该设备具有很高的灵活性与实用性。 需要注意的是: - 当输入电压超过9伏时可能会损坏电池电量检测器。 - 在充电过程中应避免使用电池,以确保安全操作。
  • MCP73833 USB PCB 用户手册 -
    优质
    本资源提供MCP73833 USB锂电池充电器的设计文档,包括详尽的原理图和PCB源文件以及实用的用户手册,适用于电子工程师进行电池充电解决方案的研究与开发。 本设计分享的是基于MCP73833的USB锂电池充电器原理图/PCB源文件。该MCP73833 USB锂电池充电器具有三个状态LED显示电池的状态,设计非常紧凑且成本低,可与高达5000mAh的电池配合使用。MCP73833 USB锂电池充电器电路的特点包括:欠压保护、MiniUSB连接器、三个状态LED指示灯以及可以选择两个不同的充电电流(100mA和470mA)。PCB板尺寸为30x13 mm(1.18x0.5英寸)。 MCP73833 USB锂电池充电器电路的实物截图及PCB布局图也包含在设计文件中。
  • 经典TP4056PCB分享-
    优质
    本项目提供经典的TP4056锂电池充电解决方案的原理图和PCB设计,支持开源下载。适合DIY爱好者和技术开发者学习参考。 TP4056锂电池充电板的开源原理图和PCB(使用pads画板)非常经典。该电路的主要功能是将输入的5V电源转换为4.2V,用于给锂电池充电,并且最大可以提供1A的充电电流。根据不同的电池容量,可以通过调整电路中的Rprog电阻值来改变充电电流;在原理图中对应的是PCB上的R4。 当进行充电时,红灯亮起;一旦充满电后,红灯熄灭并点亮绿灯作为指示。此充电板提供了两种插座选项:3.5mm DC座和Micro-USB座,但示意图仅展示了后者(即Micro USB)。新的电路板设计中增加了3.5mm的DC座,并且通过改变R4电阻值可以调整充电电流大小。
  • 升压保护板与实现(含PCB)-
    优质
    本项目专注于锂电池充电升压保护板的设计与实施,涵盖详细的电路原理及PCB布局。通过优化升压效率和安全性能,提供可靠稳定的电源解决方案。 3.7V锂电池充电,并实现5V升压稳定输出。
  • 比较PCB和BOM等-
    优质
    本资源提供了一种频率比较器电路的设计资料,包括详细的原理图、PCB设计文件以及物料清单(BOM),是电子工程师进行同类项目开发的理想参考。 频率比较器是一种电路设计用于从两个输入信号的频率对比中获取一个参考电压水平。该电路由两路输入组成:一路使电容器部分放电,另一路使其充电。这样,电容上的平均电量(即所需的参考电压)会根据这两个输入信号的频率变化。 在静止状态下,通过R3和R4组成的分压器将C1充至一半电压。当其中一个信号供给晶体管T1基极时,它依据输入频率进行开关操作。电路的主要作用是产生一系列与输入信号频率相关的脉冲来控制晶体管T2的开闭状态,从而让电容C1以第一路输入信号的频率放电。 如果两个输入频率相等,则充电和放电周期相同,导致通过C1的电压等于电源电压的一半。当一个输入频率高于另一个时,通过电容器C1的实际电压会偏离4.5V:若第一个输入频率较低,则该值大于4.5V;反之则低于此值。 为了测试电路性能,我们分别将K1端口连接至5kHz信号源、K2端口连接至2.5kHz信号源,并由9伏电源供电于K3。经测量发现,在这种情况下输出电压为3.7V(小于4.5V)。当调换输入频率后即第一个输入点改为较低的频率时,测得的输出电压上升到5.3V以上。
  • HiFiPCB
    优质
    本资料深入解析Hi-Fi功放电路设计,包含详细电路图与PCB布局方案,旨在帮助电子爱好者和工程师掌握高品质音频放大器的设计技巧。 本设计完全自行完成,包括参数计算、原理图绘制及PCB布局设计。所涉及的器件有NE5532运算放大器和TDA2030A音频放大器,并参考了它们的数据手册。
  • 桌面空气PCB程序-
    优质
    本项目提供桌面空气检测仪的设计方案,包括详细的电路原理图、PCB设计文件和控制源代码。适合电子爱好者和技术开发者研究与实践。 公告:本电路为网友xzwj00原创的开源项目,经作者同意在电路城进行分享。 感谢xzwj00的支持与奉献。 (若发现非原创作品,请通过反馈平台提出投诉) 电路城支持并尊重所有原创设计者,在此平台上出售个人项目的卖家可以从中获利。欢迎申请成为电路城卖家以售卖自己的创新成果。 本项目为一款空气检测仪,主要用于测量环境中的温度、湿度、PM2.5和甲醛浓度。 其成品效果图展示的是使用Altium Designer进行PCB布局设计的结果;主控芯片选用STM32F103C8型号,温湿度传感器采用AM2302模块,颗粒物(PM2.5)检测则依赖于夏普GP2Y1051传感器,甲醛浓度测量部分配置了攀藤DS-HCHO 模块。此外还配有一个分辨率为QVGA的2.4寸LCD显示屏,并且板载两个按键用于操作控制。 开发环境使用Keil 5.15版本进行编译;框架则基于ebox构建,使得操控STM32F103系列单片机变得如同Arduino般简易便捷。 在工程文件夹中: - Start_code和CMSIS包含了为STM32F103芯片定制的初始化设置; - libraries是ST公司提供的标准库文件; - ebox目录下放置了基于C++开发的ebox框架相关代码; - edriver目录内存放着空气检测仪所需硬件驱动程序; - user文件夹则允许用户在此编写自定义显示界面及运行逻辑。 项目并未采用ebox自带实时操作系统,而是移植了一个调度器。GUI部分采用了小马哥设计的GUI_CORE组件实现可视化操作界面。
  • 手机DIY制作(含PCB程序码)-
    优质
    本项目提供了一种自制手机锂电池放电电量测量装置的方法,包括详细的原理图、PCB设计和程序源代码,旨在帮助电子爱好者深入理解电池管理和监测技术。 该设计主要用于粗略测量手机锂电池的放电电量。此电路还需外接USB-TTL模块及万能充电器将电池电源引出。利用STC自带比较器控制MOS管实现恒流,取样电阻为0.1欧姆(建议改为0.5欧姆),由于比较器误差约为1.5mV,实际电流会略有偏差。程序中每秒采样一次Vcc和Vbat的值,并根据这些数据计算PWM值、推算出实际设置电流值并累加得到电量信息,然后通过串口将当前的电压及电量等信息发送至电脑的串口调试助手。当电池电压降至指定阈值时,蜂鸣器会发出声音。 电路中的关键部分包括:PWM0用于设定电流;ADC4采集VBAT/3;P1.0为蜂鸣器正极;P3.7为蜂鸣器负极。在电路修改方面,建议将ADC4对地连接一个0.1uf电容,并且C2改为0.1uf。 需要注意的是:此电路没有防反接功能,在接入电池时需注意正负极性,否则可能会烧毁MOS管。测量结果仅供参考。
  • ADP7104 POEPCB分享-
    优质
    本资源提供ADP7104 POE电源板的设计资料,包含详尽的原理图和PCB源文件。适用于需要深入了解POE电源解决方案的技术人员和工程师。 本设计分享的是基于ADP7104电源管理芯片的POE电源板设计,并附上了原理图和PCB源文件(使用AD软件打开)。该POE电源板利用了ADP7104完成了PoE供电以及业务板与PoE供电模块之间的转接功能。电路中主要涉及的重要芯片包括ADP7104、MP2315和AAT4285。 关于ADP7104的特点如下:它是一款CMOS低压差线性调节器,支持从3.3 V到20 V的电源输入范围,并且最大输出电流可达500 mA。这款高输入电压LDO适用于调节从19 V至1.22 V供电的各种高性能模拟和混合信号电路的应用场景中。
  • 容量量系统(含、程序报告)
    优质
    本项目详细介绍了锂电池容量测量系统的电路设计,包括系统工作原理、硬件电路图以及软件编程代码,并附有完整的设计报告。 锂电池容量测量设计原理是通过可控的恒流放电来实现的。在这一过程中,系统会显示电池电压、放电电流以及已放出的容量。为了达到恒定电流的效果,PWM信号经过三级DA滤波处理后生成可变且稳定的电压输出,从而控制恒流放电过程中的电流大小。 当进行放电操作时,指示灯将以每0.5秒一次的速度闪烁以示提醒。系统通过状态ADC获取电池的实时电压数据,在达到预设终止电压值之后会自动停止放电,并使指示灯保持常亮状态,避免过度放电对电池造成损害。 此外,还有一个补充说明涉及到了连接上位机的操作方法(具体视频演示内容未在此文本中提供)。同时附上了实物作品图的截图供参考。