Advertisement

行业分类-设备装置-利用压力传感器的步态检测方法与系统.zip

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本发明涉及一种基于压力传感器的创新步态检测技术及系统。该方案能够精确捕捉人体行走或站立时的压力分布数据,通过分析这些数据来评估个体步态特征、运动能力和潜在健康风险,为康复医疗和生物力学研究提供支持。 标题“行业分类-设备装置-基于压力传感器的步态检测方法及系统”表明这是一个关于医疗器械或健康监测技术的主题,具体涉及使用压力传感器来分析和评估人的步态。步态检测是生物力学、医学和健康科学领域的重要研究方向,它可以为临床诊断、康复治疗以及运动性能评估提供有价值的数据。 描述中强调了利用压力传感器实现步态检测的技术。通过这种技术可以实时准确地捕获地面反作用力,从而分析步行时下肢各部位的压力分布和时间序列变化。这有助于识别行走异常,并揭示关节疾病(如骨关节炎)、神经系统问题(如帕金森病)和其他可能导致行走困难的病症。 在基于压力传感器的步态检测系统中,通常包括以下几个组成部分: 1. 压力传感器阵列:由多个小型传感器组成,覆盖鞋底或步行表面,用于捕捉全方位的压力分布。 2. 数据采集单元:将传感器收集到的数据进行整合和预处理,转换为数字信号。 3. 信号处理算法:对数字信号进行分析,提取出步态特征。 4. 存储和传输模块:存储检测结果,并可能通过无线方式将数据传输至计算机或移动设备。 5. 用户界面:展示分析结果,提供可视化图表,便于医生或研究人员解读。 该系统涉及的硬件和技术包括传感器技术、嵌入式系统设计、信号处理等。在实际应用中,这种技术可以广泛应用于康复医疗、体育训练和老年人护理等领域,帮助提高诊断效率,并定制个性化的康复方案及监测运动员的训练状态和疲劳程度。 文档“基于压力传感器的步态检测方法及系统.pdf”详细阐述了该系统的具体实现方法、工作流程以及实验验证。通过阅读这份文档可以深入理解压力传感器在步态检测中的应用和技术细节。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • --.zip
    优质
    本发明涉及一种基于压力传感器的创新步态检测技术及系统。该方案能够精确捕捉人体行走或站立时的压力分布数据,通过分析这些数据来评估个体步态特征、运动能力和潜在健康风险,为康复医疗和生物力学研究提供支持。 标题“行业分类-设备装置-基于压力传感器的步态检测方法及系统”表明这是一个关于医疗器械或健康监测技术的主题,具体涉及使用压力传感器来分析和评估人的步态。步态检测是生物力学、医学和健康科学领域的重要研究方向,它可以为临床诊断、康复治疗以及运动性能评估提供有价值的数据。 描述中强调了利用压力传感器实现步态检测的技术。通过这种技术可以实时准确地捕获地面反作用力,从而分析步行时下肢各部位的压力分布和时间序列变化。这有助于识别行走异常,并揭示关节疾病(如骨关节炎)、神经系统问题(如帕金森病)和其他可能导致行走困难的病症。 在基于压力传感器的步态检测系统中,通常包括以下几个组成部分: 1. 压力传感器阵列:由多个小型传感器组成,覆盖鞋底或步行表面,用于捕捉全方位的压力分布。 2. 数据采集单元:将传感器收集到的数据进行整合和预处理,转换为数字信号。 3. 信号处理算法:对数字信号进行分析,提取出步态特征。 4. 存储和传输模块:存储检测结果,并可能通过无线方式将数据传输至计算机或移动设备。 5. 用户界面:展示分析结果,提供可视化图表,便于医生或研究人员解读。 该系统涉及的硬件和技术包括传感器技术、嵌入式系统设计、信号处理等。在实际应用中,这种技术可以广泛应用于康复医疗、体育训练和老年人护理等领域,帮助提高诊断效率,并定制个性化的康复方案及监测运动员的训练状态和疲劳程度。 文档“基于压力传感器的步态检测方法及系统.pdf”详细阐述了该系统的具体实现方法、工作流程以及实验验证。通过阅读这份文档可以深入理解压力传感器在步态检测中的应用和技术细节。
  • --采IMU惯性及其实现.zip
    优质
    本资料介绍了一种基于IMU惯性传感器的步态分析装置及其实现技术。该装置能够精确捕捉人体行走或跑步时的姿态和动作,适用于运动科学、康复医学等多个领域研究与应用。 标题“行业分类-设备装置-一种基于IMU惯性传感器的步态分析装置及其方法”揭示了该压缩包文件的内容主要涉及医疗健康或生物力学领域,具体是利用惯性测量单元(IMU)传感器进行步态分析的技术和方法。步态分析通常用于评估人体行走或跑步时的运动模式,在诊断和治疗运动障碍、康复医学以及优化运动性能方面具有重要意义。 IMU传感器集成了加速度计、陀螺仪和磁力计,能够提供多轴运动数据,包括线性加速度、角速度及地磁方向。在步态分析中,这些数据可以追踪身体关键部位(如脚踝、膝关节、髋关节)的三维运动,从而获取详细的步态参数。 描述中的“步态分析装置及其方法”可能涵盖以下几个方面: 1. **硬件设计**:选择和配置IMU传感器,并确保它们能准确捕捉步行过程中的微小运动。装置通常包含多个分布在身体关键部位上的IMU传感器,以获得全面的步态信息。 2. **数据采集与处理**:原始数据需经过滤波、校准及融合算法来去除噪声并整合不同传感器的数据,提高信号质量。 3. **参数提取**:通过分析加速度和角速度数据计算出各种步态参数(如步长、步速等),评估运动模式的正常性和异常情况。 4. **算法开发**:可能涉及机器学习或人工智能技术来自动识别特定疾病的步态特征,辅助临床诊断及康复计划制定。 5. **用户友好界面**:装置提供直观展示分析结果的界面,使医生和患者能更好地理解步态状态与变化。 6. **应用范围广泛**:该设备不仅可用于医疗诊断,在运动训练、老年人跌倒风险评估以及优化运动员表现等方面也有广泛应用价值。 压缩包内的“一种基于IMU惯性传感器的步态分析装置及其方法.pdf”可能是一份详细的技术报告或研究论文,涵盖上述所有内容的具体说明和实验验证。阅读该文档可深入了解IMU在步态分析中的实际应用及技术细节。
  • --超高穿墙套管电气状.zip
    优质
    本系统用于监测和评估电力设施中关键部件——超高压穿墙套管的电气性能与安全状态,保障电网稳定运行。 超高压穿墙套管是电力系统的重要组成部分,用于连接变电站内部的高压设备与外部电网,并确保电流的安全高效传输。随着电力行业的不断发展,对设备安全性和稳定性的要求越来越高,因此电气状态检测系统在保障电力系统的稳定性方面扮演着关键角色。 该系统的开发和应用主要基于以下几个知识点: 1. **超高压技术**:330kV及以上的电压等级属于超高压范畴,能够传输大量电能但同时也带来更大的安全性挑战。设计和制造这类穿墙套管需要考虑绝缘性能、机械强度以及适应环境变化的能力。 2. **电气状态监测**:通过定期或实时测量设备的关键参数(如温度、局部放电及电场强度)来评估其健康状况,有助于提前发现潜在问题并避免因突发故障导致的停电事故。这种预防性维护策略被称为状态监测。 3. **套管结构与材料**:超高压穿墙套管通常采用陶瓷、玻璃钢或硅橡胶等高绝缘材料制造,必须满足电气绝缘、机械强度、热稳定性和耐候性的要求。内部可能包含导电杆用于传输电流,并需采取防潮、防尘及防腐蚀措施。 4. **局部放电检测**:当设备内部绝缘体因过高电场强度而产生微小火花时即为局部放电,长期存在会导致绝缘性能下降。通过监测这种现象可以判断套管内是否存在潜在的绝缘缺陷,并据此提供维修建议。 5. **在线监测系统**:现代电气状态检测系统通常具备持续监控功能,在不中断电力供应的情况下收集数据并将其发送至中央控制室进行分析和处理,这些系统包括传感器、数据采集模块及数据分析软件等组件。 6. **大数据与人工智能技术应用**:利用信息技术的进步,可以将大量历史数据用于建立预测模型来提前预警设备故障,并提高系统的可靠性和经济性。 7. **故障诊断与应对措施**:除了准确识别异常状态外,该系统还需提供有效的故障诊断和处理方案。这包括对不同类型的故障模式进行分析、评估其影响并为维修决策提供建议以保证问题得到及时解决且不影响电力供应的稳定性。 8. **遵循的安全标准与规范**:超高压穿墙套管电气状态检测系统的开发必须符合国家及行业相关安全标准(如GBT和IEC等),确保系统运行的安全性和有效性。
  • --于三维平台现场静标定.zip
    优质
    本发明提供了一种用于三维测力平台的现场静态标定装置及其方法。该装置和方法能够实现对复杂环境下测力平台的精准标定,确保测量数据的准确性和可靠性,广泛应用于航空航天、汽车制造等工业领域。 标题中的“一种三维测力平台现场静态标定装置及方法”揭示了该压缩包内容主要涉及的是三维测力测量技术,特别是关于测力平台的现场静态标定技术和装置。这通常是在工业生产、实验室测试或者工程研究中为了确保测量精度和准确性而进行的重要步骤。在机械设备、航空航天、汽车制造、生物力学等领域,对力的精确测量有着广泛的需求。 三维测力平台是一种能够同时测量三个正交方向(X、Y、Z)力分量的设备。这种平台通常由多个传感器组成,如应变片、压电传感器或光纤传感器,它们可以感知并转换力为电信号,并通过数据采集系统转化为可读的力值。 现场静态标定是保证测力平台性能的关键过程。由于测力平台可能会受到温度变化、机械磨损、环境振动等因素的影响,定期进行现场静态标定能确保其测量结果的准确性和稳定性。在标定过程中,会施加已知的力到平台上,并通过比较理论值与实际测量值来校准设备,调整零点和灵敏度以消除可能存在的系统误差。 文档“一种三维测力平台现场静态标定装置及方法.pdf”很可能是一份详细描述这一标定过程的技术报告或专利文献。其中可能包括以下内容: 1. 标定装置的构成:介绍用于施加已知力并控制加载系统的设备,以及测量设备精度的要求。 2. 标定流程:详细阐述如何进行标定,包括准备工作、数据采集和误差分析等步骤。 3. 标定方法:可能提出了一种新的或改进的方法来提高标定效率或精度,比如使用多点标定或者结合动态与静态标定技术。 4. 实际应用案例:展示该方法在具体应用场景中的效果,并与其他传统标定方法进行对比分析。 5. 结果评估:通过一系列实验验证新装置和方法的有效性,包括误差分析以及稳定性测试。 了解并掌握这样的三维测力平台现场静态标定技术对于从事相关行业的工程师来说至关重要。它不仅有助于提升产品质量,也有助于保证工程安全、减少潜在风险。科研人员也可以通过这种方法提高实验数据的可靠性。
  • 优质
    本文将详细介绍如何正确地安装和设置压力传感器,包括准备工作、具体步骤以及注意事项,帮助读者掌握安装技巧。 ### 压力传感器安装方法及步骤 随着现代工业自动化水平的不断提高,压力传感器作为工业自动化领域的重要组成部分,其重要性日益凸显。正确的安装不仅能够确保传感器正常工作,还能延长其使用寿命。本段落将详细介绍压力传感器的安装方法及相关注意事项。 #### 二、正确安装方法 1. **频率响应值验证** 在普通大气压(通常为101.325 kPa)和标准温度(通常是20°C)条件下,使用适当的测试设备来验证传感器的频率响应值。这一过程有助于确认传感器在预期的工作范围内是否具有良好的性能表现。 2. **编码与信号一致性检查** 核实压力传感器的编码与其产生的频率反应信号之间的一致性。这一步骤对于确保传感器输出的数据准确无误至关重要。可以通过连接传感器到读取设备上,并检查其输出信号是否符合预期的编码规则来进行验证。 #### 三、确定具体安装位置 为了确保压力传感器能够有效地监测所需的参数变化,选择合适的安装位置至关重要。以下是一些关于安装位置选择的指导原则: 1. **线缆路径上的安装** 应确保压力传感器沿着线缆进行安装,并尽可能安装在线缆接头处,这样可以更准确地监测到线缆的状态变化。 2. **安装密度** 每条线缆至少安装4个压力传感器。特别地,靠近电话局的两个压力传感器之间的距离不应超过200米,以确保监测的连续性和准确性。 3. **特殊节点的覆盖** 在每条线缆的始端和末端都应各安装一个压力传感器。此外,在线缆分支点也应安装传感器,如果两个分支点相距很近(小于100米),则只需安装一个即可。 4. **不同敷设方式间的转换点** 当线缆从一种敷设方式(如架空)转换到另一种(如地下)时,应在转换点安装压力传感器,以确保监测范围的完整性。 5. **均匀分布** 对于没有分支的线缆,应确保传感器之间的安装间隔不大于500米,并且总数不少于4个。此外,除了在起点安装一个传感器外,还应在距起点150至200米处安装一个额外的传感器,以便于故障定位。 #### 四、经济与技术因素考量 在设计安装方案时,还需要综合考虑经济和技术因素。例如,在某些没有必要安装传感器的位置,则不必安装,以避免不必要的成本支出。同时,也要考虑到长期运行的稳定性和维护成本。 #### 五、结论 正确的安装方法和合理的安装位置对于确保压力传感器的有效性和可靠性至关重要。通过遵循上述指南,可以大大提高监测系统的整体性能,从而为企业带来更高的经济效益和安全效益。
  • --视觉平台进液体药瓶中异物.zip
    优质
    本资料探讨了在制药行业中应用机器视觉技术于液体药品灌装过程中的异物检测方法。通过自动化识别和剔除含有杂质的产品,确保药物质量与安全,提升生产效率并减少人为错误。 基于机器视觉检测平台的液体药瓶异物检测方法(行业分类-设备装置).zip
  • MEMS代码
    优质
    本项目旨在开发一种基于MEMS传感器的步态检测系统,通过精确捕捉人体运动数据,分析并识别个体行走模式,适用于健康监测及康复训练等领域。 **MEMS传感器与步态检测概述** MEMS(微电子机械系统)是一种将微型传感器、执行器和其他微结构集成在芯片上的技术,能够实现对物理或化学信号的高效处理。由于其体积小、功耗低及成本效益好等特点,在生物医学领域特别是步态分析中得到广泛应用。 步态检测涉及通过捕捉行走过程中的身体运动特征来评估个体健康状况和运动能力。这些参数包括但不限于步速、步长以及支撑相和摆动相等,对于诊断与治疗帕金森病、脑卒后康复及老年痴呆症患者护理等方面具有重要意义。 **MATLAB仿真在步态检测的应用** 作为数学计算和数据分析的强大工具,MATLAB提供了丰富的信号处理与建模功能,非常适合MEMS传感器数据的分析以及步态检测算法的研发。具体应用如下: 1. **数据预处理**: 收集的数据通常含有噪声和其他干扰成分,因此需要通过滤波、平滑等手段进行初步清理。 2. **特征提取**:从加速度和角速度读数中抽取与步行相关的特征如频率、步幅以及峰值加速度值等信息。 3. **模型建立**: 使用机器学习或统计方法(例如支持向量机SVM、随机森林RF或者神经网络)构建用于识别不同步态类型的模型。 4. **结果验证**:通过交叉验证或其他数据集对比,确保所建模的准确性和稳定性。 **具体步骤与细节** 1. **数据采集**: 通常在鞋底或手腕等关键部位安装MEMS传感器以记录行走过程中的三轴加速度和角速度变化。 2. **信号处理**: 利用MATLAB提供的滤波器工具箱,如巴特沃兹或卡尔曼滤波方法来去除噪声并提取有用的信息。 3. **步态事件识别**:通过检测特定的阈值来确定步行周期中的关键点(例如足底接触和脚趾离地)。 4. **特征工程**: 计算包括但不限于步长、频率等参数,并可能计算加速度峰值,均方差等统计指标。 5. **模型训练**: 将提取出的特征输入至选定的学习算法中并用已知类型的步行模式进行训练(如正常或病理性行走)。 6. **测试与验证**:使用独立的数据集来评估模型在步态分类上的性能表现。 7. **结果可视化**:利用MATLAB图形界面展示步行参数的变化及分类成果,以便于理解和解释分析结果。 **总结** 基于MEMS传感器的步态检测技术是生物医学工程领域中的一个重要研究方向。借助强大的仿真工具如MATLAB,我们能够更有效地处理和理解这些数据,在医疗诊断、康复治疗以及运动表现评估等多个方面发挥重要作用。
  • -物理-一种调表车.zip
    优质
    本发明涉及一种用于物理设备行业的调表车检测方法及装置。该技术旨在提高调表车在工作过程中的精确性和效率,通过创新的检测手段优化调表流程,适用于多种行业应用场景。 标题中的“行业分类-物理装置-一种调表车检测方法和装置”表明这是一篇关于汽车维修、检测技术的专题文章,主要关注于调表车的检测技术。所谓调表车是指里程表被人为调整过的车辆,这样的车辆的真实行驶里程往往与显示在仪表盘上的数据不符,可能对购车者造成误导。 调表车的检测首先需要调查车辆的历史记录,包括保养记录、保险信息以及以往交易情况等。如果这些记录中的里程数与当前里程表读数存在较大差异,则可能存在调表的情况。不过这种方法依赖于完整的档案资料,在缺乏相关文件的情况下则需借助其他技术手段进行验证。 检查零部件的磨损程度是一种常用的技术方法。刹车片、轮胎和发动机皮带等部件的实际损耗情况通常会反映出车辆的真实行驶距离,如果这些零件显示出过度使用而里程数较低,则可能是调表车的一个迹象。此外,内饰件如方向盘、座椅和换挡杆的磨损状况也可以作为判断依据。 电子检测手段则是较为现代且精确的方法之一。许多现代汽车内置了车载电脑或事件数据记录器(EDR),能够存储车辆运行的相关信息,包括里程数等关键指标。通过专业诊断工具读取并分析这些数据可以揭示出里程篡改的迹象。但这种方法需要特定设备和技术知识,并非所有维修厂都能提供。 针对调表车设计的专业检测装置可能包含专用硬件和软件系统。其中,硬件部分通常涉及连接车辆诊断接口的设备;而软件则负责解析从车辆获取的数据并进行分析。此类检测工具应当具备跨车型兼容性,以适应不同制造商的电子控制系统。 在《一种调表车检测方法和装置》的相关文档中,则可能会详细介绍这一创新技术及其应用情况,包括工作原理、操作流程以及实际效果等细节内容,并通过具体案例来展示如何准确识别出调表车辆。这为消费者及汽车行业提供了重要的参考依据。 总的来说,对调表车进行有效检测是汽车后市场服务中的重要环节之一,旨在保护消费者的合法权益并维持市场的公平竞争环境。随着技术的进步,相关检测方法和设备也在不断更新以应对日益复杂的篡改手段。对于从事汽车维修的专业人士以及潜在购车者而言了解这些知识至关重要。
  • -物理-柔性GMR磁场及其制.zip
    优质
    本资料聚焦于一种创新性的物理装置——柔性巨磁阻(GMR)磁场传感器及其独特制备技术。该技术提供了高灵敏度和灵活性,适用于广泛的磁场检测应用领域。文档详细介绍了传感器的结构设计、材料选择及制造工艺流程,为研发人员提供全面指导与参考。 行业分类-物理装置-一种柔性GMR磁场传感器及其制备方法。该主题介绍了关于新型柔性巨磁阻(Giant MagnetoResistance, GMR)磁场传感器的设计与制造技术,旨在探讨其在各种应用中的潜力及优势。文中详细阐述了这种传感器的特性和工作原理,并提供了具体的制作步骤和工艺流程,为相关领域的研究者和技术人员提供有价值的参考信息。