Advertisement

PCB地线和走线的选择是覆铜还是走线?

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
覆铜的应用通常涉及电源线路和接地系统,其主要目的在于首先降低电路中的电磁干扰,其次是为了承受并导通大电流,最后也旨在优化设备的散热性能。接下来,我们将一同深入学习关于覆铜的知识。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PCB线线
    优质
    本文探讨了在电路板设计中,采用地线走线与覆铜的不同优劣,并提供选择建议以优化信号完整性及电磁兼容性。 覆铜通常用于电源和地线设计,一方面可以减少干扰,另一方面能够通过大电流,并且还有助于散热。下面我们一起学习一下相关内容。
  • PCB线线
    优质
    本文探讨PCB设计中地线走线与覆铜的选择问题,分析其优缺点及适用场景,旨在为电子工程师提供参考。 本段落主要讨论了关于PCB地线走线还是覆铜的问题,一起来学习一下。
  • PCB线设计(三)
    优质
    本篇介绍如何进行高效的PCB走线设计,包括信号完整性分析、高速电路布线技巧及常见错误预防,助力工程师优化产品性能。 在进行布线设计时需要考虑诸多因素,但最基本的原则是确保周密、谨慎的规划。 印刷电路板(PCB)布线过程中产生的主要寄生元件包括:寄生电阻、寄生电容以及寄生电感。例如,PCB上的走线连接不同组件会产生寄生电阻;而电路板上的线路与焊盘之间会形成寄生电容;环路中的电流路径、互感作用及过孔也会导致产生寄生电感。这些因素在将电路原理图转化为实际的PCB布局时,可能对最终产品的性能造成干扰。 本段落重点讨论的是如何量化一种常见的棘手问题——即由布线引起的寄生电容,并通过一个实例来展示这种现象是如何影响整个电路工作的。当两条线路相互接近地布置于同一块板上(如图1所示),它们之间就容易形成不必要的寄生电容,进而可能对信号的完整性造成负面影响。
  • PCB线小工具
    优质
    PCB走线小工具是一款专为电子工程师设计的实用软件,提供高效精确的电路板布线解决方案,帮助用户优化线路布局、减少电磁干扰,提升产品性能。 这段文字可以这样改写:对于硬件开发参考来说,对电阻有一个直观的学习认识是非常有用的。
  • Arduino Mini PCB线
    优质
    本资源提供Arduino Mini开发板详细的PCB走线图,帮助电子爱好者和工程师深入了解其内部电路布局及元件连接方式。 Arduino Mini V5 PCB布线图已经转换为标准的PCB格式。
  • PCB线规则设定
    优质
    本课程详细讲解了PCB设计中走线规则的重要性及具体设置方法,涵盖信号完整性、电磁兼容性等关键因素,帮助工程师优化电路板性能。 在进行布线之前通常需要设定一些规则以确保电路板设计的正确性和可靠性。这里将以Prote1软件中的设置为例来简单介绍。 (1)安全间距设置。 这一项对应于Routing中的Clearance Constraint选项,它定义了不同网络之间的走线、焊盘以及过孔之间必须保持的安全距离。一般情况下,PCB上的安全间隔可以设定为0.254毫米;如果板子上空间较为宽松,则可增加到0.3毫米;而对于元件密集的贴片电路板,间距则应缩小至0.2~0.22毫米左右。 (2)走线层面和方向设置。 这项对应于Routing中的Routing Layers选项,在这里可以指定所使用的布线层,并定义每种类型的信号或电源网络应该使用哪个特定的线路层。
  • PCB线基本准则
    优质
    《PCB走线的基本准则》是一篇介绍如何在印刷电路板设计中优化信号传输、减少电磁干扰的文章。文中详细阐述了布线规则与技巧,旨在帮助电子工程师提高设计质量与性能。 PCB(Printed Circuit Board)布线是硬件设计中的关键环节,它直接影响着电子设备的性能、稳定性以及电磁兼容性。以下是16条详细的PCB布线规则: 1. 多层板设计:多层PCB有助于创建独立的电源和地线层,降低电源阻抗,并通过增加接地面积减少分布电容及辐射。 2. 低阻抗走线:在高频环境下,保持电源、地以及信号线路的低阻抗至关重要。使用短而宽的线条可以有效减小高频环境下的电阻。 3. 数字与模拟地处理:AD转换器中数字部分和模拟部分的地线应避免交叉以防止相互干扰。 4. 减少环路面积:弱信号及低频电路布线不应形成大范围的环形路径,因为这会放大外部噪声的影响。 5. IO驱动位置安排:IO驱动电路应该靠近PCB边缘的接插件,并与其余部分保持距离,以减少电磁干扰传播的可能性。 6. 时钟区域地隔离措施:使用地线围绕时钟区域并尽量缩短时钟线路可以降低干扰风险。 7. 振荡器和敏感元件接地处理:石英晶体振荡器的外壳需要接地,并确保其下方及附近没有走线,以减少噪声影响。 8. 关键信号与高速线设计:关键信号应加宽并配地保护,而高速线路则应该保持短直以便于降低干扰和损耗。 9. 时钟与IO布局优化:将时钟线条垂直布置而非平行,并且尽量远离I/O电缆可以减少相互间的电磁干扰。 10. 避免形成闭合回路:所有信号路径应避免产生闭环或尽可能缩小环形区域,以减小噪声影响范围。 11. 单点接地与粗电源线应用:单层和双层板设计中采用单一点接地原则,并且使用足够宽的电源线路来降低阻抗并提高电流传输效率。 12. 元器件引脚长度优化:元件引脚应尽量短,去耦电容同样需要缩短其引脚。优先选择贴片式电容器因其具有更低的等效串联电阻(ESR)和较低的等效串联电感(ESL)特性。 13. 折线角度考虑:45度角折弯优于90度直角转弯,因为前者有助于减少高频信号辐射及耦合效应。 14. 时钟、总线与IO关系调整:将这些关键线路远离I/O和接插件布置可以防止外部噪声的干扰。 15. 时钟发生器位置优化:应该把时钟源靠近使用该频率元件以降低延迟并减少引入噪音的机会。 16. 数字与模拟信号隔离措施:确保模拟电压输入线及参考电压端远离数字电路,特别是避免接近时钟线路,保障模拟部分的纯净度不受影响。 以上规则旨在帮助工程师优化PCB布线设计,提高系统的效率、电磁兼容性以及整体性能。遵循这些指导原则能够显著提升硬件产品的质量和可靠性,并减少潜在问题的发生率。
  • PCB线电阻电感估算
    优质
    本文探讨了如何估算PCB(印制电路板)上信号走线的电阻与电感值,分析其对电路性能的影响,并提供了实用计算方法。 自己制作的走线电感及其电阻估算计算表中包含有相关的计算公式。
  • 什么?网格与实心区别什么?
    优质
    本文探讨了覆铜的概念,并深入分析了网格覆铜和实心覆铜之间的区别。帮助读者了解这两种不同的覆铜方式在电路板设计中的应用及其优缺点。 覆铜是指将电路板上闲置的区域用实心铜填充的一种做法,这些被填满的部分被称为灌铜区。进行覆铜处理的意义在于:减少地线阻抗以提高系统的抗干扰能力;降低电压降,从而提升电源效率;并且与地相连时可以减小环路面积。此外,在PCB焊接过程中为了防止变形,大多数的PCB生产商也会建议在空旷区域填充实心或网格状的地线。 然而,不当处理覆铜可能会适得其反,导致不利影响超过有利效果。众所周知,在高频环境下,印刷电路板上的布线会因为分布电容的作用而产生天线效应;当线路长度大于噪声频率对应波长的1/20时,就会向外发射噪音。如果在PCB设计中存在不良接地处理的覆铜区域,则这些覆铜部分可能成为传播干扰信号的媒介。 因此,在高频电路的设计中,不能简单地认为某一点与地线连接就代表良好接地;必须以小于波长1/20的距离间隔打孔,并确保通过多层板的地平面实现“良好接地”。当处理得当时,覆铜不仅能够增加电流承载能力,还能起到屏蔽干扰的作用。 覆铜通常有两种方式:大面积覆铜和网格状覆铜。哪种形式更好取决于具体的应用场景,不能一概而论。