Advertisement

MPC-Control:利用MPC算法调控车辆行驶轨迹

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
简介:本文介绍了一种基于模型预测控制(MPC)的算法,用于精确调节和优化车辆在动态环境中的行驶路径与稳定性。通过实时调整车辆的驾驶策略,该系统能够有效应对复杂的交通状况,提高道路安全性和通行效率。 对于审稿人: MPC模型的详细信息。 初始状态和参考轨迹 Eigen::MatrixXd transformGlobal2Vehicle(double x, double y, double psi, const vector &ptsx, const vector &ptsy) { assert(ptsx.size() == ptsy.size()); unsigned len = ptsx.size(); auto waypoints = Eigen::MatrixXd(2, len); for(auto i = 0; i < len; ++i){ waypoints(0, i) = cos(psi)*(ptsx[i] - x) + sin(psi)*(ptsy[i] - y); waypoints(1, i) = -sin(psi)*(ptsx[i] - x) + cos(psi)*(ptsy[i] - y); } return waypoints; }

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MPC-Control:MPC
    优质
    简介:本文介绍了一种基于模型预测控制(MPC)的算法,用于精确调节和优化车辆在动态环境中的行驶路径与稳定性。通过实时调整车辆的驾驶策略,该系统能够有效应对复杂的交通状况,提高道路安全性和通行效率。 对于审稿人: MPC模型的详细信息。 初始状态和参考轨迹 Eigen::MatrixXd transformGlobal2Vehicle(double x, double y, double psi, const vector &ptsx, const vector &ptsy) { assert(ptsx.size() == ptsy.size()); unsigned len = ptsx.size(); auto waypoints = Eigen::MatrixXd(2, len); for(auto i = 0; i < len; ++i){ waypoints(0, i) = cos(psi)*(ptsx[i] - x) + sin(psi)*(ptsy[i] - y); waypoints(1, i) = -sin(psi)*(ptsx[i] - x) + cos(psi)*(ptsy[i] - y); } return waypoints; }
  • chap6_LocalPlan_TrackingCtrl_无人驾规划_基于mpc制方_无人驾_跟踪
    优质
    本章节探讨了无人驾驶车辆中基于模型预测控制(MPC)的轨迹跟踪算法,重点研究其在实现精确路径跟随和动态调整驾驶策略中的应用。 在无人驾驶车辆模型预测控制的第二版第六章中,讨论了加入规划层的轨迹跟踪控制方法。
  • 自动驾 MPC 跟踪
    优质
    本项目聚焦于开发基于模型预测控制(MPC)算法的高效能自动驾驶轨迹跟踪系统,旨在提升车辆在复杂驾驶环境中的路径跟随精度与稳定性。 ### 智能驾驶相关 轨迹跟踪模型预测 #### 一、引言与背景 随着交通拥堵问题的日益严重以及道路安全性的需求提升,自动驾驶技术逐渐成为研究热点。本段落介绍了一种基于模型预测控制(Model Predictive Control, MPC)的路径跟踪算法,旨在解决自动驾驶车辆在复杂环境下的路径跟踪问题。该方法通过综合考虑车辆动力学特性、执行器限制以及状态约束等多方面因素,实现了更为灵活且高效的路径跟踪控制策略。 #### 二、模型预测控制(MPC)概述 MPC 是一种先进的控制策略,在工业过程控制系统中得到了广泛应用。它能够处理复杂的动态系统,并有效应对各种约束条件。在自动驾驶领域,MPC 被用于路径跟踪和速度控制等多个方面。其核心思想在于:每个采样时刻根据当前系统的状态求解一个有限时间内的最优控制序列;仅将该序列中的第一个控制量应用于实际系统中;然后根据新的系统状态重复这一过程。 #### 三、路径跟踪问题的重要性 路径跟踪是实现自动驾驶车辆自主导航的关键技术之一。它涉及如何使车辆沿着预设的路径行驶,并确保其安全性和舒适性。良好的路径跟踪能力对于自动驾驶汽车来说至关重要,因为它直接影响到车辆能否准确无误地到达目的地。 #### 四、MPC 在路径跟踪中的应用 本研究采用 MPC 方法设计了一种路径跟踪控制器。具体步骤如下: 1. **确定可行区域**:依据检测到的道路边界来界定自动驾驶车辆(AGVs)的运行空间。 2. **建立运动模型**:随后,利用车辆的动力学和运动学模型描述其动态特性。 3. **设计控制器**:为了使 AGV 的实际轨迹保持在预定义区域内并满足安全性要求,采用 MPC 方法设计路径跟踪控制器。此过程中考虑了车辆动力学特征、执行器限制及状态约束等因素。 4. **稳定性分析**:进一步进行了系统稳定性的数学证明,并指出理论上不存在静态误差问题。 5. **仿真验证**:通过高保真度的 veDYNA 车辆模拟软件进行了一系列测试,以检验所提算法的有效性。这些测试涵盖了不同速度和道路摩擦系数等条件下的情况,结果显示该算法具有良好的路径跟踪性能。 #### 五、关键技术点 - **前轮转向角作为控制变量**:本段落中将 AGV 的前轮转向角度视为控制输入,并通过调整此参数实现轨迹追踪。 - **考虑车辆动力学与约束限制**:在设计 MPC 控制器时,充分考虑到车辆的实际动态特性和各种物理限制条件(如最大转角和加速度等)。 - **稳定性分析**:证明了系统的渐近稳定性质,并指出理论上不存在静态误差问题。 - **仿真验证**:使用高精度的 veDYNA 软件进行算法性能测试,结果表明在多种工况下均能实现有效的路径跟踪。 #### 六、结论 本段落提出了一种基于 MPC 的路径追踪控制策略,在综合考虑车辆动力学特性、执行器限制和状态约束的基础上实现了高效且灵活的轨迹跟随。通过仿真验证证明了所提算法的有效性和鲁棒性,为推动自动驾驶技术的发展奠定了基础。未来的研究方向可能包括更复杂环境下的路径规划与跟踪以及提高算法计算效率等方面。 该研究不仅对理论分析有所贡献,还具有较高的实际应用价值,在智能驾驶领域中有着广阔的应用前景和推广意义。
  • chap5_Matlab_Code_无人驾跟踪_基于mpc的主动转向制_checkhnm.zip
    优质
    本资源包含用于无人驾驶车辆轨迹跟踪的Matlab代码,具体实现基于模型预测控制(MPC)的主动转向控制系统。文件内含详细注释与示例数据,适合深入研究和开发使用。 chap5 Matlab Code_轨迹跟踪_基于mpc主动转向控制_无人驾驶车辆_checkhnm.zip
  • MPC追踪
    优质
    MPC轨迹追踪技术利用模型预测控制算法,优化路径规划与实时调整,广泛应用于自动驾驶、机器人导航等领域,确保高效安全运行。 本代码主要采用模型预测控制算法来实现无人驾驶车辆的路径跟踪,并进行了Simulink与CarSim的联合仿真。
  • 基于MPC的自动驾追踪方
    优质
    本研究提出了一种基于模型预测控制(MPC)的自动驾驶车辆轨迹跟踪算法,旨在提高复杂驾驶环境下的路径跟随精度和稳定性。 本段落基于MPC运动学方法实现轨迹跟踪的推导,并在MATLAB中进行代码实现。尽管参考书籍大多采用Simulink与Carsim联合仿真的方式,但我坚持使用纯代码仿真,因为这种方式更优秀。我所使用的代码模板借鉴了LQR轨迹跟踪算法Python/Matlab的实现方案,可以直接复制并应用。 ```matlab clc; clear all; Kp = 1.0; dt = 0.1; % [s] Length = 2.9; % [m] 车辆轴距 Nx=3;%状态量个数 Nu =2;%控制量个数 Np =60;%预测步长 Nc=30;%控制步长 Row=10;%松弛因子 Q=100*eye(Nx*Np,Nx*Np); ```
  • 无人驾MPC程序
    优质
    本程序为无人驾驶车辆设计,采用模型预测控制(MPC)算法优化车辆行驶路径与速度,确保安全高效驾驶。 龚建伟第二版书中的可行程序遇到问题时,欢迎大家留言讨论,共同进步学习。
  • MPC_control_robot:MPC移动机器人跟踪制-源码
    优质
    本项目提供基于模型预测控制(MPC)算法的移动机器人轨迹跟踪控制源代码,适用于实现精确路径规划与避障功能。 MPC_control_robot:基于模型预测控制(Model Predictive Control, MPC)的移动机器人轨迹跟踪控制系统。该系统利用MPC技术来优化移动机器人的路径规划与实时调整能力,确保其能够精确地遵循预定轨迹进行运动。通过采用先进的算法和数学建模方法,此方案有效提升了机器人在复杂环境中的导航精度及响应速度。
  • 自主驾的路径规划及跟踪制研究-路径规划、跟踪制、MPC模型预测
    优质
    本文聚焦于自主驾驶车辆中的路径规划与轨迹跟踪控制技术,深入探讨了基于MPC(模型预测控制)的方法,旨在提升自动驾驶系统的安全性和效率。 为了减少道路突发事故并提高车辆通行效率,研究车辆的紧急避障技术以实现自主驾驶至关重要。基于车辆点质量模型,我们设计了非线性模型预测控制(MPC)路径规划器;同时,根据车辆动力学模型,我们也开发了线性时变MPC轨迹跟踪器。