Advertisement

LADRC线性自抗扰,三阶ESO状态扩展观测器,Boost升压电路,双闭环控制,双LADRC控制,电压外环使用LADRC线性自抗扰

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出一种采用三阶ESO和双闭环控制策略的Boost升压电路设计,其中电压外环通过LADRC实现精确调节,提高系统鲁棒性和动态响应。 LADRC(线性自抗扰)结合三阶ESO(状态扩张观测器)应用于boost升压电路中的双闭环控制策略。该系统采用电压外环与电流内环的双重LADRC控制,其中电压外环利用LADRC进行调控,并配备三阶ESO以实现精确的状态估计;同样地,电流内环也采用了相同的LADRC和三阶ESO配置。 实验观察了电路在电源负载突变情况下的动态特性。具体而言,在12V跳升至15V且负载从50欧姆骤增至100欧姆的情况下,系统能够使输出电压稳定于24V。该基于LADRC和三阶ESO的控制方案可以有效应用于光伏及风电等仿真模型中,并可作为PI控制器的理想替代品。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LADRC线ESOBoostLADRC使LADRC线
    优质
    本研究提出一种采用三阶ESO和双闭环控制策略的Boost升压电路设计,其中电压外环通过LADRC实现精确调节,提高系统鲁棒性和动态响应。 LADRC(线性自抗扰)结合三阶ESO(状态扩张观测器)应用于boost升压电路中的双闭环控制策略。该系统采用电压外环与电流内环的双重LADRC控制,其中电压外环利用LADRC进行调控,并配备三阶ESO以实现精确的状态估计;同样地,电流内环也采用了相同的LADRC和三阶ESO配置。 实验观察了电路在电源负载突变情况下的动态特性。具体而言,在12V跳升至15V且负载从50欧姆骤增至100欧姆的情况下,系统能够使输出电压稳定于24V。该基于LADRC和三阶ESO的控制方案可以有效应用于光伏及风电等仿真模型中,并可作为PI控制器的理想替代品。
  • 线适应LADRC).zip
    优质
    《线性自适应抗扰控制(LADRC)》是一份深入探讨现代控制系统设计中关键问题的研究资料。该技术通过实时调整参数,有效减少外部干扰对系统稳定性的影响,适用于多种工业自动化场景。文档包含理论解析、算法实现及应用案例分析,为工程技术人员提供宝贵参考。 自抗扰控制学习的基本程序包括使用Simulink框图和编写S-Function,并在程序中添加明确的注释和说明,以便相关专业的朋友能够轻松入门学习。
  • 系统及高动下线与非线Simulink模型比较:优化LADRC和PID的能分析,针对二系统的线(LADRC)...
    优质
    本研究在Simulink环境下,对比了二阶系统及高阶扰动下的线性与非线性自抗扰控制策略,并深入探讨了优化LADRC和PID控制器性能的方法。 本段落对比分析了二阶系统在高阶扰动条件下的线性自抗扰(LADRC) Simulink模型与非线性自抗扰(NLADRC)Simulink模型的性能表现,其中引入了步进及正弦形式的外部干扰。通过这些仿真模型可以详细比较PID控制策略和自抗扰(ADRC)方法在不同条件下的优劣。 文中提到两个主要模型采用了复杂的模块化设计,并且使用代码进行编程实现。特别地,在LADRC模型中,为了提高系统的鲁棒性和响应速度,引入了TD(时间延迟补偿)模块进行了优化改进。通过这种对比研究和模拟实验的开展,可以为实际工程应用中的控制策略选择提供有价值的参考依据。 关键词:二阶系统; 线性自抗扰(LADRC)Simulink模型; 非线性自抗扰(NLADRC)Simulink模型; 扰动(步进与正弦); PID和ADRC对比分析;复杂模块代码编写;LADRC改进及TD模块。
  • 转速.zip_2J2_ADRC__流_
    优质
    本项目聚焦于电机控制系统中ADRC(自抗扰控制)技术的应用与优化,特别关注基于ADRC的转速环和电流环设计。通过引入先进的自抗扰策略,实现对电动机精确、高效的电流控制,适用于各种动态负载条件下的高性能驱动需求。 自抗扰控制(ADRC,Active Disturbance Rejection Control)是一种先进的控制理论,在自动化和电力系统领域中有广泛应用。压缩包“自抗扰转速环电流环.zip_2J2_ADRC_电流环_自抗扰电流_自抗扰控制器”包含有关于在电机控制系统中应用自抗扰控制器的资料,可能使用MATLAB或类似仿真软件创建。 深入了解自抗扰控制的基本原理:它基于状态观测器的设计,核心思想是将系统内部未知干扰和外部干扰视为动态变量。通过设计合适的控制器实时估计并抵消这些干扰,使得控制器能够精确地调整系统的动态性能,即使面对复杂的不确定性和干扰也能保持稳定。 压缩包中的“2J2”可能代表特定的模型编号或控制策略类型,用于区分不同的方案。电流环和转速环是电机控制系统的关键部分:电流环控制电机电流以确保适当的驱动扭矩;而转速环调整电机旋转速度以满足需求。这两个环节通常采用反馈控制方式,通过比较期望值与实际值来调节输入信号。 自抗扰控制器的设计步骤包括: 1. **系统建模**:建立描述电机动态特性的数学模型。 2. **状态观测器设计**:使用状态观测器实时估计系统的未知干扰和内部状态。 3. **控制器设计**:结合状态观测器的估算值,形成控制信号以抵消扰动。 4. **参数调整**:“调参”根据系统特性优化控制器性能。 5. **仿真验证**:在MATLAB等软件环境下进行模拟测试,评估自抗扰策略的效果。 压缩包中的“新建文件夹”可能包含相关代码、模型或实验数据,用于实现并分析自抗扰控制技术的应用。用户可以运行这些内容来观察电机在不同条件下的响应特性,如稳态误差和动态性能等指标。 总的来说,该资料对于理解自抗扰控制技术在电流环和转速环中的应用具有重要价值。无论是学习还是项目开发,都能从中获得有益的信息,并通过进一步研究提升系统的稳定性和性能。
  • ADRC.zip_一ADRC仿真_线ADRC_线_
    优质
    本项目包含一阶线性自抗扰控制系统(ADRC)的仿真模型,适用于研究和教学用途。通过MATLAB/Simulink实现,展示其在不同条件下的性能表现。 一阶和二阶线性自抗扰控制的Simulink仿真模型。
  • PMSM线
    优质
    本文介绍了一种应用于永磁同步电机(PMSM)的线性自抗扰控制策略,该方法通过优化控制器参数,有效提升了系统的动态响应和稳定性。 线性自抗扰控制器(Linear Active Disturbance Rejection Controller, 简称LADRC)是一种现代控制理论中的先进策略,它结合了经典与现代控制理论的优点,在电机控制系统中尤其适用于永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)。本项目旨在利用LADRC优化PMSM的性能,提高其精度和动态响应。 PMSM因其高效率、大功率密度及宽调速范围等特性,广泛应用于工业自动化与电动汽车等领域。然而,在设计控制系统时面临非线性问题、参数不确定性以及外界干扰等诸多挑战。因此需要一种能够有效抑制这些影响的控制器来应对这些问题。 LADRC的核心在于将系统的未知扰动视为独立动态变量,并通过估计和抵消该扰动实现控制目标。其主要组成部分包括扩展状态观测器(Extended State Observer, ESO)及反馈控制器,ESO用于实时估算系统状态与未知扰动;而反馈控制器则依据ESO提供的信息设计控制策略以消除干扰影响。 在MATLAB环境下开发LADRC时,我们可以利用Simulink工具箱构建PMSM的数学模型,并设计相应的LADRC模块。这包括建立电机电气和机械动力学模型,考虑电磁转矩、反电势、电流、速度及位置等关键变量;接着设计ESO来估计系统状态与未知扰动(通常采用一阶或二阶滤波器结构);最后基于这些估算值设计线性反馈控制器(如PID或LQR),以实现对电机速度和位置的精准控制。 实际应用中,LADRC的优势在于其鲁棒性能有效地处理模型不精确、参数变化及外部干扰。通过调整LADRC的参数可以灵活地平衡控制效果与稳定性,在MATLAB仿真环境中优化这些参数,并根据不同设定下的系统响应结果确定最佳策略。 压缩包内可能包含以下内容: 1. PMSM数学模型文件,描述电机电气和机械特性。 2. LADRC模块(包括ESO及反馈控制器的Simulink模型)。 3. 参数设置与配置文档,定义了LADRC的各项参数如滤波器系数和增益等。 4. 仿真脚本用于运行并分析控制系统性能。 5. 结果分析报告可能包含仿真的结果以及对控制性能的评估。 通过深入理解LADRC的工作原理,并结合MATLAB工具我们可以有效地设计与优化PMSM的控制策略,从而提升电机的整体表现。此外,该方法同样适用于其他类型电机系统的控制方案,具有广泛的实用价值和适用性。
  • 线LADRC与PI在永磁同步机中的对比分析:能比较(无超调优势)
    优质
    本研究探讨了线性自抗扰控制器(LADRC)和比例积分(PI)控制器在外接于永磁同步电机控制系统中,尤其是在速度调节环节的无超调性能上的差异。实验结果显示LADRC在响应时间和稳定性方面具有明显的优势。 与PI外环相比,线性自抗扰(LADRC)外环在控制永磁同步电机时无超调。