Advertisement

关于粒子群算法在遗传算法中应用的研究论文.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究论文探讨了粒子群优化算法在改进遗传算法性能方面的应用,通过结合两者优势,旨在解决复杂问题时提高寻优效率和精度。 遗传算法是一种基于自然界生物进化原理的搜索优化方法,在1975年由美国Michigan大学的J.Holland教授首次提出。该算法模拟了自然界的遗传与进化过程,并通过群体策略及个体间的基因交换来寻找问题的最佳解决方案。其主要特点在于采用选择、交叉和变异三种操作,广泛应用于组合优化、规划设计、机器学习以及人工生命等领域。 然而,在实际应用中,遗传算法存在一些局限性,例如容易陷入局部最优解且后期收敛速度较慢。这主要是由于在进化过程中种群个体趋于相似导致搜索空间集中于当前最优点附近而产生早熟现象。为解决这些问题,研究者们提出了多种改进方法如CHC算法、自适应遗传算法(AGA)、大变异算子和进化稳定策略等。尽管这些方案增加了多样性,但仍然难以完全避免随机性和盲目性带来的影响。 粒子群优化(PSO)是由Kennedy和Eberhart在1995年提出的一种群体智能搜索方法,灵感来源于鸟类或鱼类的集体运动行为。在此算法中,一群“粒子”代表可能解,在解决方案空间内飞行并根据自身的历史最佳位置以及整个群体的最佳历史位置来调整速度与方向以寻找最优解。 本研究基于PSO提出了改进后的遗传算法,旨在克服传统遗传算法存在的局限性。该方法的核心思想是利用PSO技术构建变异算子和分割种群,并通过动态调节变异的幅度及方向避免盲目性;同时将大群体划分为多个重叠的小群分别进化以维持多样性并防止早熟现象的发生。 具体来说,PSO中的粒子根据其历史最优位置以及整个群体的历史最佳解来调整速度与飞行路径,从而提高搜索效率。这种机制模拟了自然界中生物集体智慧的行为模式,并且有助于改进局部和全局的探索能力。 在三个多峰函数优化实验对比下,新的遗传算法表现出良好的种群多样性维持效果、克服早熟收敛问题的能力以及加速进化过程的优势。这些成果表明结合PSO特性的新方法不仅增强了搜索范围内的全面性而且还提高了对复杂难题处理时的表现潜力和适应度需求的满足程度。 这篇论文由来自郑州大学信息工程学院秦广军教授,东北大学软件学院王欣艳副教授及中原工学院计算机科学与技术系王文义博士联合完成。他们的研究领域包括遗传算法、信息安全以及集群计算等方向。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .pdf
    优质
    本研究论文探讨了粒子群优化算法在改进遗传算法性能方面的应用,通过结合两者优势,旨在解决复杂问题时提高寻优效率和精度。 遗传算法是一种基于自然界生物进化原理的搜索优化方法,在1975年由美国Michigan大学的J.Holland教授首次提出。该算法模拟了自然界的遗传与进化过程,并通过群体策略及个体间的基因交换来寻找问题的最佳解决方案。其主要特点在于采用选择、交叉和变异三种操作,广泛应用于组合优化、规划设计、机器学习以及人工生命等领域。 然而,在实际应用中,遗传算法存在一些局限性,例如容易陷入局部最优解且后期收敛速度较慢。这主要是由于在进化过程中种群个体趋于相似导致搜索空间集中于当前最优点附近而产生早熟现象。为解决这些问题,研究者们提出了多种改进方法如CHC算法、自适应遗传算法(AGA)、大变异算子和进化稳定策略等。尽管这些方案增加了多样性,但仍然难以完全避免随机性和盲目性带来的影响。 粒子群优化(PSO)是由Kennedy和Eberhart在1995年提出的一种群体智能搜索方法,灵感来源于鸟类或鱼类的集体运动行为。在此算法中,一群“粒子”代表可能解,在解决方案空间内飞行并根据自身的历史最佳位置以及整个群体的最佳历史位置来调整速度与方向以寻找最优解。 本研究基于PSO提出了改进后的遗传算法,旨在克服传统遗传算法存在的局限性。该方法的核心思想是利用PSO技术构建变异算子和分割种群,并通过动态调节变异的幅度及方向避免盲目性;同时将大群体划分为多个重叠的小群分别进化以维持多样性并防止早熟现象的发生。 具体来说,PSO中的粒子根据其历史最优位置以及整个群体的历史最佳解来调整速度与飞行路径,从而提高搜索效率。这种机制模拟了自然界中生物集体智慧的行为模式,并且有助于改进局部和全局的探索能力。 在三个多峰函数优化实验对比下,新的遗传算法表现出良好的种群多样性维持效果、克服早熟收敛问题的能力以及加速进化过程的优势。这些成果表明结合PSO特性的新方法不仅增强了搜索范围内的全面性而且还提高了对复杂难题处理时的表现潜力和适应度需求的满足程度。 这篇论文由来自郑州大学信息工程学院秦广军教授,东北大学软件学院王欣艳副教授及中原工学院计算机科学与技术系王文义博士联合完成。他们的研究领域包括遗传算法、信息安全以及集群计算等方向。
  • 优化混合方.pdf
    优质
    本研究论文探讨了将遗传算法和粒子群优化技术相结合的方法,旨在提高复杂问题求解效率和性能。通过实验证明该混合策略的有效性和优越性。 本段落从进化计算的框架出发,比较分析了遗传算法与粒子群优化算法在个体、特征及操作上的异同,并结合两者的优势,构建了一种基于实数编码的混合算法。作者为时小虎和韩世迁。
  • 优化信道分配
    优质
    本研究探讨了遗传算法和粒子群优化算法在无线通信网络中频段资源分配的应用效果,旨在提高信道使用效率及服务质量。通过仿真分析比较两种算法的优势与局限性,为实际工程设计提供理论支持与实践指导。 本段落探讨了遗传算法和粒子群优化算法在信道分配中的应用,并分析了这两种方法各自的优点与不足之处。文章进一步提出了一种结合两种算法的混合策略来改进信道分配的效果。
  • 改进滑模控制.pdf
    优质
    本文探讨了如何通过改进粒子群算法来优化滑模控制系统的设计与性能,旨在提高系统的响应速度和稳定性。 本段落提出了一种针对非线性系统的新型滑模控制方案。该方法结合了改进粒子群算法与传统滑模控制技术,通过智能优化设计切换函数及指数趋近律系数,显著加快系统达到滑动模式的速度,并提升了动态性能和鲁棒性。实验结果显示,所提出的方案能够使系统快速准确地跟踪期望状态轨迹,并有效减少滑模控制中的高频振动问题。最后,在倒立摆系统的仿真研究中验证了该方法的有效性和优越性。
  • :改进重采样方滤波.pdf
    优质
    本文探讨了通过引入遗传算法优化粒子滤波中的重采样步骤,提出了一种改进的重采样策略,以提升复杂环境下的状态估计准确性。 本段落提出了一种改进的粒子滤波算法中的重采样方法,该方法借鉴了生物界的遗传机制来解决传统粒子滤波过程中出现的粒子多样性退化问题。通过引入遗传算法原理,能够有效提升粒子滤波器在处理复杂动态系统时的表现和效率。
  • 物流心选址.pdf
    优质
    本文探讨了将粒子群优化算法应用于物流中心选址问题的研究与应用,分析其在提高选址效率和减少成本方面的优势。通过实例验证了该方法的有效性和实用性。 客户细分是客户关系管理中的基础且重要的组成部分。本段落全面考虑了客户的生命周期价值,并结合群体决策技术和数据挖掘技术提出了一种新的客户细分方法。首先,在群体决策的基础上确定影响客户分类的关键变量,然后利用层次分析法来设定这些变量的权重。接着通过应用数据挖掘中的聚类技术进行具体客户分群工作。以某橡胶企业为例进行了验证性研究,结果表明该方法能有效支持企业的客户细分,并为公司决策提供有力的数据支撑。
  • .pdf
    优质
    《粒子群算法的应用与研究》一文深入探讨了粒子群优化算法在多个领域的应用及其最新研究成果,旨在为科研人员提供理论支持和技术指导。 《粒子群算法及其应用研究》是一本非常不错的书,内容比较清晰易懂。
  • 多旅行商问题.pdf
    优质
    本论文探讨了遗传算法在解决多旅行商问题中的应用,通过优化算法参数和策略,提高了求解效率与路径规划的最优性。 针对所有旅行商路径总和最小为优化标准的多旅行商问题,采用遗传算法进行优化,并提出了一种矩阵解码方法。通过仿真对距离非对称的多旅行商实例进行了研究,并比较了不同交叉算子的效果。结果表明该算法是有效的,适用于解决距离对称和非对称的情况下的多旅行商问题。
  • FSP.zip
    优质
    本研究探讨了遗传算法在流水车间调度问题(FSP)中的应用,旨在优化生产流程和提高效率。通过实验分析验证其有效性与优越性。 遗传算法是进化算法的一种形式,其核心在于利用选择、交叉(重组)与变异这三种基本操作来解决优化问题。流水车间调度问题(FSP)是一个NP完全难题,在难度上可比肩旅行商问题中的不对称城市情况下的最棘手类型之一。通常情况下,直接用数学方法求解生产调度问题是极具挑战性的,因此将数学计算和智能算法相结合成为了一种有效的途径。本段落主要探讨如何运用遗传算法来解决基础的流水车间问题,并详细介绍了通过选择、交叉及变异等操作寻找FSP最优解的方法;此外还讨论了最优解收敛图、平均值收敛图以及绘制相应的甘特图的过程。
  • 改进自适.pdf
    优质
    本研究论文探讨了改进自适应遗传算法的新方法,旨在提高算法在解决复杂优化问题时的效率与性能。文中详细分析并验证了若干创新策略的有效性。 Srinvivas等人提出了一种自适应遗传算法,在这种算法中,交叉概率与变异概率会根据适应度的大小而改变。然而,这种方法存在一个问题:群体中最优个体(即具有最大适应度值的个体)的交叉率和突变率为零,这增加了进化过程陷入局部最优解的风险。 为了解决这个问题,研究人员提出了一种改进后的自适应遗传算法,在该算法中,即使是最具优势的个体也保留了非零的概率进行交叉与变异操作。实验结果显示,这种改良方法在抑制“早熟”现象、防止落入局部最优点以及加快群体收敛速度等方面均表现出显著效果。