Advertisement

STM32电机控制的PID速度和电流双闭环代码

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本项目提供了一套基于STM32微控制器的电机控制系统源码,实现了PID算法用于精准调节电机的速度与电流。 本项目使用STM32F103微控制器实现直流电动机的速度-电流双闭环控制,并采用PID算法进行调节。速度和电流的闭环控制位于Userbalance模块中,而其他驱动程序则位于User模块内。 该项目包括了基于PID的速度-电流双环控制系统、LCD1602显示当前电机速度及设定值的功能,以及通过矩阵键盘调整PID参数的能力。此外,STM32内置的FLASH存储器用于保存当前设置的参数,并且可以通过串口将速度-电流曲线传输至PC机进行实时监控。用户还可以利用PC机来修改PID算法中的相关参数。 以上描述涵盖了原文的主要内容和功能特点,未包含任何联系信息或网址链接。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32PID
    优质
    本项目提供了一套基于STM32微控制器的电机控制系统源码,实现了PID算法用于精准调节电机的速度与电流。 本项目使用STM32F103微控制器实现直流电动机的速度-电流双闭环控制,并采用PID算法进行调节。速度和电流的闭环控制位于Userbalance模块中,而其他驱动程序则位于User模块内。 该项目包括了基于PID的速度-电流双环控制系统、LCD1602显示当前电机速度及设定值的功能,以及通过矩阵键盘调整PID参数的能力。此外,STM32内置的FLASH存储器用于保存当前设置的参数,并且可以通过串口将速度-电流曲线传输至PC机进行实时监控。用户还可以利用PC机来修改PID算法中的相关参数。 以上描述涵盖了原文的主要内容和功能特点,未包含任何联系信息或网址链接。
  • 系统实现.zip_____
    优质
    本项目介绍了直流电机电流与速度双闭环控制系统的设计与实现方法。通过构建电流和速度两个闭环回路,有效提高了电机的响应速度及稳定性。 直流电机电流和速度双闭环控制系统的PID调节方法。
  • 03、STM32-F4 直有刷)- 位置式PID.zip
    优质
    本资源提供基于STM32-F4微控制器的直流有刷电机双闭环控制系统源代码,包含速度环和电流环的位置式PID算法,适用于电机驱动及控制应用开发。 标题中的“03、STM32-F4 直流有刷电机-速度环电流环 双闭环控制-位置式PID 源代码”表明这是一个关于使用STM32 F4系列微控制器实现直流有刷电机控制的项目。在这个项目中,重点是通过速度环和电流环的双闭环控制策略以及应用位置式PID算法来优化电机运行性能。 STM32 F4系列基于ARM Cortex-M4内核,具备浮点运算单元(FPU),适用于复杂的实时控制任务。在电机控制领域,STM32 F407型号因其强大的计算能力和丰富的外设接口而被广泛应用。 描述中提到,“单片机引脚的连接对照相应的.h文件里的宏定义”,暗示了开发者可能使用GPIO的宏定义来配置STM32的引脚以连接电机驱动器和其他外围设备。这些.h文件通常包含了芯片寄存器映射信息和预定义常量,使得操作硬件资源更加方便,并且可以根据实际硬件布局修改宏定义确保代码可移植性。 标签中的“stm32”、“PID”、“源代码”、“单片机”和“编程”,揭示了项目的几个关键元素。STM32是微控制器品牌,PID是一种反馈控制算法,源代码表示提供了实现该控制算法的程序;单片机指的是作为微控制器角色的STM32;而编程则意味着需要理解C语言或其他编程语言来解析和使用这些源代码。 在直流有刷电机控制中,速度环与电流环双闭环控制是常用方法。其中,速度环负责调整转速,电流环监控并调节电机电流以保持扭矩稳定。两者相互配合可以提高响应速度及稳定性;位置式PID控制器根据实际位置与目标位置偏差进行调控,实现精确的位置控制。 源代码可能包括以下几个部分: 1. 初始化函数:设置STM32时钟、GPIO、ADC和PWM等外设。 2. 电机参数设定:例如电气时间常数、最大电流限制等。 3. PID控制器计算误差及其比例、积分与微分项,并更新PWM占空比以调整电机状态,涉及速度环及电流环的PID控制算法实现; 4. 位置检测:利用编码器或其他传感器获取实时位置信息; 5. 主循环:不断采集数据并根据反馈进行相应调节。 通过此项目学习者可以深入了解STM32硬件资源使用、电机控制理论以及实际应用中如何实施PID算法。同时,源代码的阅读与分析也有助于提升单片机编程和调试技能。
  • STM32PID
    优质
    本项目提供了一套基于STM32微控制器的电机PID闭环控制系统源代码,适用于快速实现电机精确控制需求。 STM32 PID电机闭环控制代码包括绝对式PID算法以及增量式PID计算。
  • STM32:直有刷位置、PID.zip
    优质
    本项目资源提供了基于STM32微控制器实现直流有刷电机的位置、速度及电流三闭环PID控制系统的设计与代码,适用于工业自动化与机器人技术。 部分代码展示:下载文件包含完整工程 定义了与PID相关的宏参数: - CUR_P_DATA (0.35f)、CUR_I_DATA (0.6f) 和 CUR_D_DATA (0.0f) 用于电流控制。 - TARGET_CURRENT 设定为最大电流值,即 300mA。 - SPD_P_DATA (4.5f)、SPD_I_DATA (0.5f) 和 SPD_D_DATA (0.0f) 用于速度控制。 - 目标速度设定为 20r/m(每分钟转数)。 - LOC_P_DATA (0.009f)、LOC_I_DATA (0.002f) 和 LOC_D_DATA (0.04f) 用于位置控制。 - TARGET_LOC 设定为目标位置,即3倍的PPR。 私有变量定义: - Start_flag 是一个标志位,表示PID开始状态,默认值为0。 - Motor_Dir 表示电机旋转方向,默认设为CW(顺时针)。 - tmpPWM_DutySpd 和 tmpPWM_Duty 用于保存计算后的数值。
  • STM32增量式PID
    优质
    本项目探讨了基于STM32微控制器的增量式PID算法在电机速度控制中的应用,实现对电机速度的精准调节与稳定控制。 电机速度闭环控制(代码详细注释) 本段落介绍的是基于STM32的电机速度PID增量式闭环控制系统的设计与实现方法。该系统通过调整PID参数来精确控制电机的速度,确保其在各种工况下都能稳定运行。 1. 硬件准备:首先需要搭建一个包含STM32微控制器和直流电机的基本硬件平台,并连接必要的传感器(如编码器)用于反馈速度信息。 2. 软件设计: - 初始化阶段设置PID参数,包括比例系数Kp、积分时间常数Ti及微分时间常数Td。这些值需要根据具体应用场合进行调试优化以达到最佳控制效果; - 读取电机当前的实际转速数据,并与设定的目标速度相比较得到误差信号e(t)。 - 计算增量式PID输出量Δu,公式如下: Δu(k)=Kp * e(k)+ (1/Ti)*∫(0~t)e(τ)dτ+Td/(Tsample)*(e(k)-e(k-1)) - 将计算出的控制信号发送给电机驱动电路以调节其转速。 3. 代码实现:在具体的程序编写过程中,需要对上述算法流程进行逐行注释以便于理解和维护。 4. 测试与调试: - 运用示波器或数据记录软件监测系统的响应特性; - 根据实验结果调整PID参数直至系统达到满意的动态性能和稳态精度。 注意:本段落内容参考了平衡小车之家的相关资料,但未包含任何联系方式。
  • 系统.rar
    优质
    本资源提供了一套完整的直流电机控制系统代码,实现了对电机电流和转速的同时闭环调节,适用于电机驱动及自动化领域研究。 直流电机速度环电流环控制STM32简易代码实现
  • 基于FPGAPID
    优质
    本项目采用FPGA技术实现对直流电机的速度PID闭环控制,通过硬件描述语言编写控制算法,优化了电机响应速度与稳定性。 基于FPGA的直流电机速度闭环PID控制采用硬件描述语言实现直流电机的速度控制系统设计,主要功能包括:电机加速、减速、定速及速度检测等功能的实现。
  • 基于FPGAPID
    优质
    本项目利用FPGA技术实现对直流电机的速度闭环PID控制,通过硬件描述语言精确编程,优化电机响应时间与稳定性,提高控制系统效率。 基于FPGA的直流电机速度闭环PID控制采用硬件描述语言实现了一种直流电机的速度控制系统设计。该系统主要实现了以下功能:电机加速、减速、定速及速度检测等。
  • STM32 F1_HAL PID 位置与
    优质
    本项目提供了一套基于STM32F1系列微控制器的PID双闭环控制系统源代码,实现对电机的位置和速度精确控制。 直流有刷电机的控制相对简单,只需在电机两端施加一定电压差使其旋转,并通过调整该电压差来调节速度。本例程采用互补通道输出的方式驱动直流有刷电机:一个通道为PWM信号,另一个通道则保持固定电平;当需要改变方向时,仅需关闭其中一个通道即可。对于配备编码器的电机而言,可以测量其转速和转动角度;若该电机带有减速装置,则在计算速度时还需考虑减速比的影响。电流是衡量电机性能的关键参数之一,在本例程中通过读取采样电阻上的电压来估算电机电流,并控制使其维持在一个恒定值。