Advertisement

AES加密算法研究及其实现(论文和C++代码)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本论文深入探讨了AES加密算法的工作原理,并提供了详细的C++语言实现代码。通过理论分析与实践应用相结合的方式,旨在帮助读者全面理解并掌握AES的应用技术细节。 本项目使用Visual Studio 2008工具创建并编译完成,并且支持更高版本的Visual Studio工具打开。程序采用AES算法进行数据及文件加密与解密操作。所使用的秘钥长度包括128位、196位和256位三种,而块模式则有ECB、CBC、PCBC、OFB、CFB以及CRT六种选择。 在对数据进行加密时,用户可以设置自己的加密秘钥;若未指定,则程序将使用默认密码。对于文件的加密操作,需要设定源文件路径、密钥文件路径及结果保存位置。 项目开发语言和框架为C++与MFC,并且资料中包含了论文以及C++源码。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • AESC++
    优质
    本论文深入探讨了AES加密算法的工作原理,并提供了详细的C++语言实现代码。通过理论分析与实践应用相结合的方式,旨在帮助读者全面理解并掌握AES的应用技术细节。 本项目使用Visual Studio 2008工具创建并编译完成,并且支持更高版本的Visual Studio工具打开。程序采用AES算法进行数据及文件加密与解密操作。所使用的秘钥长度包括128位、196位和256位三种,而块模式则有ECB、CBC、PCBC、OFB、CFB以及CRT六种选择。 在对数据进行加密时,用户可以设置自己的加密秘钥;若未指定,则程序将使用默认密码。对于文件的加密操作,需要设定源文件路径、密钥文件路径及结果保存位置。 项目开发语言和框架为C++与MFC,并且资料中包含了论文以及C++源码。
  • 关于AES
    优质
    本研究深入探讨了AES(高级加密标准)的工作原理,并通过编程实践实现了该算法在数据加密中的应用,旨在提高信息安全水平。 **AES加密算法** AES(Advanced Encryption Standard)是目前广泛使用的对称加密算法之一,由比利时密码学家Joan Daemen和Vincent Rijmen设计。2001年,美国国家标准与技术研究所(NIST)选定了AES作为新的联邦信息处理标准(FIPS PUB 197),取代了之前的DES加密算法。 **AES的工作原理** AES的核心是基于替换和置换的混合操作,包括四个主要步骤:字节代换、行移位、列混淆以及密钥加。这些步骤在加密与解密过程中都会执行,但方向相反。AES支持128、192及256位的密钥长度,并且使用固定大小为128位的数据块。 - **字节代换**:每个8位的字节通过一个固定的查找表进行替换,这个过程基于S盒(Substitution Box)实现非线性转换。 - **行移位**:数据矩阵中的每一行向左移动一定数量的位置,在不同的轮次中,该数目有所不同。 - **列混淆**:使用线性的变换来混淆数据矩阵的列,以增加破解算法的难度。 - **密钥加**:将当前轮使用的密钥与数据矩阵进行按位异或操作。这是每一轮迭代的关键步骤之一。 **MATLAB实现AES** 在MATLAB中可以高效地模拟AES的各种步骤,利用其强大的数学计算和编程环境来实现这一加密算法。以下是可能涉及的一些关键代码元素: 1. **定义S盒**:创建一个256x8的矩阵表示S盒中的值。 2. **初始化向量与密钥扩展**:根据选定的密钥长度,进行相应的密钥扩展操作以生成多个轮次所需的密钥。 3. **字节代换、行移位和列混淆**:通过循环及索引操作来实现矩阵的变换过程。 4. **密钥加**:将当前轮使用的密钥与数据矩阵进行按位异或运算。 5. **迭代过程**:重复执行上述步骤,通常进行10轮(对于使用128位密钥的情况)以完成整个加密流程。在MATLAB中实现AES时,添加详细的注释有助于理解代码各个部分的工作原理,并且确保经过充分测试后没有错误。 **应用场景** 由于其高效性和安全性特点,AES被广泛应用于数据存储、网络通信、无线通信(如4G和5G)、安全软件以及金融交易等众多领域。MATLAB实现的AES算法不仅可以作为教学工具帮助学生学习加密技术的基本原理,还可以用于研究开发与信息安全相关的项目。 通过在MATLAB中实践AES的实现过程,可以深入理解该算法的工作机制,并且提升自身的编程技能。
  • AES的改良在FPGA上的-
    优质
    本文探讨了对AES加密算法进行优化的方法,并详细描述了该改进版算法在FPGA硬件平台上的具体实现方式与性能评估。 AES加密算法的改进及FPGA实现
  • AESDESC语言
    优质
    本项目提供AES与DES两种经典密码学加密算法在C语言中的具体实现。通过简洁高效的代码展示了这两种广泛使用的对称密钥加密技术的工作原理。 AES 和 DES 均为对称加密算法。文件中包含分别对应这两个加密算法的 C 源码模块,可以直接调用,并附有相关注释。
  • C#AES程序
    优质
    本项目提供了一个用C#编写的完整AES加密与解密解决方案,包含详细的源代码。适合需要进行数据安全处理的技术爱好者和开发者参考学习。 我完成了一个AES加密解密算法程序,其中的所有核心算法都是我自己实现的。
  • C语言AES.
    优质
    本段代码展示了如何使用C语言实现AES(高级加密标准)加密算法。它提供了对称密钥加密功能,适用于数据安全传输和存储场景。 AES加密算法可以用C语言实现。这里可以提供一个简单的示例代码来展示如何在C程序中使用AES进行数据加密与解密。需要注意的是,在实际应用中需要确保使用的库支持AES,并且正确处理密钥管理和IV(初始向量)的生成,以保证安全性。 以下是一个简化的例子: 1. 首先包含必要的头文件和定义: ```c #include #include // 假设这里有一个aes_encrypt函数用于加密操作 void aes_encrypt(unsigned char *plaintext, int plaintext_len, unsigned char *key, unsigned char *iv, unsigned char * ciphertext); // 同样假设这里也有一个对应的解密函数: void aes_decrypt(unsigned char* ciphertext, int ciphertext_len, unsigned char* key,unsigned char* iv, unsigned char* decryptedtext); ``` 2. 定义主程序逻辑,调用上述加密和解密的函数: ```c int main(int argc, char *argv[]) { // 生成或获取AES密钥与IV值(此处省略具体实现) const int key_length = 32; // 密钥长度为256位,即32字节 unsigned char key[key_length] = 0123456789abcdef0123456789abcdef; const int iv_length = 16; unsigned char iv[iv_length] = {0}; // 加密部分: printf(请输入明文:); char plaintext[1024]; fgets(plaintext, sizeof(plaintext), stdin); // 去掉换行符 int len = strlen(plaintext)-1; if (len > 0 && plaintext[len] == \n) { plaintext[len] = \0; } unsigned char ciphertext[4 * 128]; aes_encrypt((unsigned char*)plaintext, strlen(plaintext), key, iv, ciphertext); printf(密文为:); for(int i=0; i
  • C语言AES
    优质
    这段代码实现了使用C语言编写的AES(Advanced Encryption Standard)加密算法。它提供了密钥扩展、加轮密文以及逆变换等功能,适用于需要数据安全保护的应用场景。 请提供一个用C语言编写的AES加密算法的实现代码,要求详细、简单且易于理解。
  • CC++中的AES与解
    优质
    本文档深入探讨了在C和C++编程语言中实现AES(高级加密标准)加密及解密的具体方法和技术细节。通过详尽的代码示例,读者能够掌握如何利用这两种语言进行数据安全处理。 AES(Advanced Encryption Standard),即高级加密标准,在信息安全领域扮演着至关重要的角色,并被广泛应用于数据加密、网络安全以及数字版权保护等多个方面。本资源提供了C语言及C++语言实现的AES算法,对于学习与理解其工作原理和实际应用具有很高价值。 该算法源于比利时密码学家Joan Daemen和Vincent Rijmen设计的Rijndael算法,并于2001年被美国国家标准技术研究所(NIST)选定为标准。AES的工作模式包括ECB、CBC、CFB、OFB及CTR等,其中CBC与CFB常用于网络传输,而CTR模式则在并行处理中表现出色。 AES的核心在于替换和置换操作,主要包括字节代换(SubBytes)、行位移(ShiftRows)、列混淆(MixColumns)以及轮密钥加(AddRoundKey)。这些步骤确保了明文块通过与多轮所需的轮密钥交互后生成不可读的密文;在解密过程中,则逆向执行上述操作以恢复原始数据。 利用C和C++实现AES加密及解密算法时,通常需要关注以下几点: 1. **密钥扩展**:支持128、192或256位的密钥长度,并将这些初始密钥转换为多轮所需的轮密钥。 2. **字节代换**:每个字节通过S盒进行非线性替换,增加密码复杂度。 3. **行位移**:每一行中的元素按特定规则移动位置,确保各轮之间的差异性。 4. **列混淆**:对矩阵的列执行线性变换操作,使相邻列间产生依赖关系。 5. **轮密钥加**:每一轮结束时,将当前轮密钥与状态矩阵进行异或运算以引入随机化因素。 6. **模式选择**:根据实际需要选取合适的AES工作模式。例如,在CBC模式中需使用初始化向量IV,并在加密过程中与前一密文块执行异或操作。 学习并理解这些源代码有助于深入探究AES算法的内部机制,掌握如何在其编程实现中的应用。这不仅能够提升密码学知识水平,还能够增强安全领域的编程能力。同时,在分析源码时可以了解不同工作模式下适配AES的方法,并为实际项目提供可靠的数据保护方案。 该资源可能包含C和C++语言下的AES加密解密源文件,如头文件、主函数及核心算法定义等。通过阅读这些代码能够逐步理解每个函数的作用以及整个流程的运作方式,这对于掌握并应用AES至关重要。在实践中应遵循正确的编码规范与安全实践,例如妥善管理密钥以避免明文存储,并尽可能使用经过验证的安全库(如OpenSSL或Botan)来降低潜在风险。
  • C语言中AES
    优质
    本文章提供了一个在C语言环境下实现AES(高级加密标准)加密算法的具体代码示例。通过详细的注释和步骤说明,帮助读者理解并掌握AES加密的核心原理与实践技巧,适用于密码学研究或数据安全需求的应用开发人员参考学习。 AES加密算法的全称是Advanced Encryption Standard(高级加密标准),它的出现主要是为了取代DES加密算法。由于DES算法的密钥长度为56位,因此其理论安全强度约为2的56次方。 AES与分组密码Rijndael基本相同,但Rijndael支持128位、192位和256位的不同分组大小和密钥大小。然而,AES仅要求分组长度为128位,因此只有使用这种特定长度的Rijndael才被称为AES算法。
  • VerilogC++下的AES
    优质
    本项目涉及使用Verilog和C++实现AES(高级加密标准)加密算法。通过对比两种编程语言在实现相同功能时的效率与差异,探索硬件描述语言与通用编程语言的不同特点。 AES加密算法的Verilog和C++代码可以用于实现不同的硬件和软件应用需求。这些代码提供了对称密钥加密功能,确保数据的安全传输与存储。通过使用这两种编程语言,开发者能够灵活地在FPGA和其他数字电路中集成AES引擎或将其嵌入到复杂的软件系统内。