Advertisement

微分方程的数值解法(汤怀民,胡健伟)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《微分方程的数值解法》由汤怀民与胡健伟合著,系统介绍了求解各类微分方程的常用数值方法及其理论基础。本书适合数学及相关专业师生参考使用。 汤怀民和胡健伟编著的《微分方程数值方法》非常适合用作教材和自学参考书。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 怀
    优质
    《微分方程的数值解法》由汤怀民与胡健伟合著,系统介绍了求解各类微分方程的常用数值方法及其理论基础。本书适合数学及相关专业师生参考使用。 汤怀民和胡健伟编著的《微分方程数值方法》非常适合用作教材和自学参考书。
  • 优质
    《偏微分方程的数值解法》一书深入浅出地介绍了求解偏微分方程的各种数值方法,包括有限差分法、有限元法等,适用于科研人员及高校师生阅读。 偏微分方程数值解涵盖了椭圆形方程、抛物型方程以及双曲型方程。
  • Matlab
    优质
    本课程专注于教授如何使用MATLAB软件求解各类常微分方程的数值解法,涵盖基础理论、算法实现及应用实例。 矩阵与数值分析实验中的常微分方程数值解法程序是用Matlab编写的。
  • .ppt
    优质
    本演示文稿探讨了偏微分方程(PDE)的各种数值求解方法,包括有限差分、有限元和谱方法等,并分析其适用场景与优缺点。 偏微分方程数值方法.ppt 这份演示文稿介绍了如何使用数值方法求解偏微分方程的相关内容和技术。
  • (5)
    优质
    本课程为常微分方程数值解系列课程第五部分,深入讲解龙格-库塔方法及其应用,并探讨刚性问题求解策略。 Richardson外推法紧差分法是一种数值计算方法。
  • (3)
    优质
    本课程为《常微分方程数值解法》系列课程第三部分,主要讲解龙格-库塔方法及其应用,并介绍稳定性分析和误差估计。 本段落主要探讨了常微分方程组的数值解法,涵盖了从一阶到高阶的各种情况,并提供了Python代码实现这两种方法的具体应用。 对于一阶常微分方程组而言,其求解可以视为单一方程情形下的扩展形式,通过将函数f和变量y看作向量来处理。因此,在此背景下讨论的欧拉法、梯形法及龙格库塔法等算法均能适用于此类问题。 改进后的欧拉方法是一种广泛应用的技术手段之一(见式(3)),其预测-校正格式如式(4)所示,用于求解初值问题 y′ = f(x, y),示例如下: ```python import numpy as np def improving_euler_method(): h = 0.1 low = 0 up = 1 y1 = [1] y2 = [0] x = [low] def predictor_method(): y1_ip1_predictor = y1[-1] + h * (y2[-1]) y2_ip1_predictor = y2[-1] - h * (y1[-1]) return y1_ip1_predictor, y2_ip1_predictor def corrector_method(): while 1: y1_ip1_predictor, y2_ip1_predictor = predictor_method() y1_ip1_corrector = y1[-1] + h * 0.5 * (y2[-1] + y2_ip1_predictor) y2_ip1_corrector = y2[-1] + h * 0.5 * (-y1[-1] - y1_ip1_predictor) y1.append(y1_ip1_corrector) y2.append(y2_ip1_corrector) x.append(x[-1] + h) if x[-1] + h > up: break return np.array(x), np.array(y1), np.array(y2) x, y1, y2 = corrector_method() return x, y1, y2 ``` 此外,针对高阶常微分方程的求解问题,则推荐采用四阶龙格库塔方法(见式(6)),这同样是一种精确度较高的数值计算技术。 总之,无论是处理一阶还是更高阶的常微分方程组时,借助Python编程语言进行算法实现都是十分有效的手段。
  • 延迟
    优质
    《延迟微分方程的数值求解方法》一文系统探讨了延迟微分方程的各种高效且准确的数值算法,深入分析了其在科学计算中的应用。 延迟微分方程数值解法的稳定性与收敛性是毕业论文的主题。
  • (PDF版)
    优质
    《偏微分方程的数值解法》是一本专注于介绍如何使用数值方法求解偏微分方程的电子书。本书详细阐述了各类算法和技术,为读者提供了深入理解和应用这些重要数学工具所需的资源。 此资源为PDF格式,内容不是图片形式,而是可以复制的文字加上图形和公式。
  • Matlab中求常见序-偏_序.rar
    优质
    本资源提供了在MATLAB环境下求解各类偏微分方程数值解的常用程序,涵盖多种算法和应用实例,适合科研与工程计算。 Matlab偏微分方程的数值解法常用程序-偏微分方程的数值解法_程序.rar包含了解决一些偏微分方程问题的常用代码,希望能对大家有所帮助,欢迎下载!
  • 常用
    优质
    本文章介绍了几种常用的求解常微分方程数值解的方法,旨在帮助读者理解和应用这些技术解决实际问题。 常微分方程的数值解法主要包括欧拉方法和龙格库塔方法。这两种方法便于学习和查阅。