Advertisement

通过融合卷积神经网络(CNN)和WiFi指纹库,构建室内定位算法。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
为了提升基于WiFi的室内定位的准确性并缩短计算时间,本文提出了一种融合卷积神经网络(Convolutional Neural Networks, CNN)与传统指纹库的室内定位算法。该算法的核心在于利用接收信号强度指示(Received Signal Strength Indication, RSSI)数据,首先通过卷积神经网络模型对实时输入数据进行预判,从而初步确定待测点的位置。在此基础上,在保证了广阔范围位置预测的较高准确率的同时,进一步结合传统指纹库中的指纹点信息,最终确定更为精确的位置结果。实验数据表明,在满足时效性要求的情况下,系统能够实现约65%的累计误差小于1米的定位精度,以及约85%的累计误差小于1.5米的定位精度,并且定位误差表现出良好的稳定性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于CNNWiFi
    优质
    本研究提出了一种结合卷积神经网络(CNN)和WiFi信号特征的室内定位技术,通过构建大规模WiFi指纹数据库优化定位精度。 为了提高基于WiFi的室内定位精度并减少计算时间, 我们提出了一种结合卷积神经网络(CNN)与传统指纹库的算法。该方法利用接收信号强度指示(RSSI)数据,首先通过CNN模型根据实时输入预测待测点的大致位置。在确保大范围内的初步预测准确性的基础上,再使用传统的指纹数据库进一步确定精确度更高的最终定位结果。实验表明,在满足时效性要求的情况下,累计误差不超过1米的精度约为65%,而累计误差不超过1.5米的情况则达到约85%的准确性,并且定位误差较为稳定。
  • 从零(CNN)之旅
    优质
    本课程带领初学者从零开始探索和构建卷积神经网络(CNN),详细介绍其原理与实践应用。 本段落主要通过代码实例详细介绍了卷积神经网络(CNN)架构中的卷积层、池化层和全连接层,希望对您的学习有所帮助。 卷积神经网络的基础内容可以参考相关资料。通常情况下,一个典型的卷积神经网络包括以下三个部分:卷积层、池化层以及全连接层。下面将分别介绍这三个组成部分的具体细节: 2.1 卷积层 在讨论卷积神经网络中的“卷积”时,需要注意到它与信号处理领域中所说的“卷积”的区别。后者通常涉及镜像相乘和求和的操作过程;而在CNN的上下文中,“卷积操作”则直接进行元素对应位置上的乘法运算之后再求和,无需执行任何翻转或对称变换。 如上图所示(此处应有相关示意图),最左侧为输入数据,中间部分表示用于计算的“卷积核”,而右侧则是经过上述步骤后得出的结果。具体来说,在给定一个3x3大小的卷积核的情况下,可以观察到绿色和红色标记框内的操作过程: - 绿色方框中的例子展示了如何将卷积核与输入数据进行逐点相乘,并求其总和来获得输出值; - 类似地,对于图中用红圈标出的位置也可以通过相同的方法计算得到相应的结果。 以上便是关于CNN架构核心组件之一——“卷积层”的简要说明。
  • CNN
    优质
    CNN卷积神经网络是一种深度学习模型,特别擅长处理二维数据如图像识别和分析。通过多层卷积提取特征,有效减少参数量,广泛应用于计算机视觉领域。 使用卷积神经网络对MNIST数据集进行分类的代码是用Python编写的,并包含详细的注释。文件自带MNIST数据集,用户只需搭建好TensorFlow环境并配合Python即可运行。
  • CNNCNN).txt
    优质
    CNN卷积神经网络是一种深度学习模型,主要用于图像识别与处理。它通过模仿生物视觉系统结构,具备高效的特征提取能力,在计算机视觉领域有广泛应用。 卷积神经网络(Convolutional Neural Network, CNN)是一种深度学习模型,在图像处理领域有着广泛的应用。由于原句重复了多次“cnn卷积神经网络”,这里将其简化为: 卷积神经网络(CNN)在图像识别和处理中发挥着重要作用。
  • 基于TensorFlow的(CNN).zip
    优质
    本资源提供了一个使用Python和TensorFlow框架实现卷积神经网络(CNN)的详细教程与实践代码。通过该教程,学习者可以掌握构建、训练和优化CNN模型的基础知识,并将其应用于图像识别任务中。适合对深度学习感兴趣的研究人员和技术爱好者。 资源包含文件:设计报告word+源码使用 keras.js+vue 构建前端手写字母识别的 demo。 1962年受Hubel和Wiesel对猫视觉皮层电生理研究启发,Kunihiko Fukishima(福岛邦彦)最先提出了卷积神经网络(CNN),近年来卷积神经网络发展迅速,在语音识别、人脸识别、通用物体识别、运动分析等领域取得了显著成果。TensorFlow为手写字符推荐的算法是卷积神经网络,模型识别率高达99.6%。 卷积神经网络原理:含有隐含层的神经网络。使用Python代码实现卷积神经网络的具体方法可以参考相关文献或教程进行学习和实践。
  • (CNN).pdf
    优质
    本PDF文档深入浅出地介绍了卷积神经网络(CNN)的工作原理及其在图像识别、语音识别等领域的广泛应用。内容涵盖基础概念与最新研究进展。 卷积神经网络(CNN)快速入门笔记: 一、卷积神经网络(CNN) 二、LeNet——推进深度学习早期发展的代表性卷积神经网络之一 1. 卷积操作 2. 非线性简介及ReLU激活函数介绍 3. 池化操作 4. 全连接层
  • CNN的训练
    优质
    CNN(卷积神经网络)的训练过程涉及多步骤,包括数据预处理、初始化权重和偏置、前向传播计算输出、反向传播调整参数及利用损失函数优化模型精度。 随着人工智能的迅速发展,深度学习作为其核心技术之一,在图像识别、语音处理等领域取得了革命性的突破。卷积神经网络(CNN)是深度学习的重要组成部分,在图像和视频分析方面表现卓越,已经成为计算机视觉领域的主流技术。然而,数据集规模不断扩大以及模型复杂度提升使得传统CPU训练CNN的方式难以满足快速处理的需求。因此,利用GPU的并行计算能力进行CNN训练变得尤为重要。 GPU在训练CNN时比CPU更高效的主要原因是其拥有成百上千个核心,并能同时处理大量计算任务。在CNN训练中涉及大量的矩阵运算和数据传输,这些非常适合于GPU的并行处理机制。对于需要大规模数据集和复杂数学计算的模型而言,使用GPU不仅可以显著缩短训练时间,还能提高效率。 进行GPU训练时通常会采用特定的深度学习框架和库,如TensorFlow、PyTorch、Caffe等。它们支持GPU训练,并提供了相应的API接口以方便用户操作。这些工具内部优化了计算流程,可以自动将任务分配到GPU上加速模型的训练过程。 此外,在选择合适的GPU时也需考虑提高CNN训练效率的关键因素之一。不同品牌和型号的GPU在性能上有差异,因此需要根据模型大小、数据规模以及复杂度等因素来合理选择适合的GPU型号以达到最佳效果。 实际操作中需要注意以下几点: 1. 数据预处理:由于图像数据通常较大,在训练前需进行归一化及增强等高效的操作减少传输至GPU的时间。 2. 模型设计:考虑到计算和内存限制,过于复杂的模型可能引起资源耗尽影响速度。因此合理地设计网络结构与参数是提升效率的重要环节。 3. 批量大小的选择:过小或过大都会导致问题出现,需通过实验确定最佳值。 4. 超参数调整:学习率、动量等对训练效果和速度有很大影响,在GPU环境下需要更细致的考虑进行优化。 5. 并行策略的应用:合理利用多GPU可以进一步提升效率。这涉及到模型切分、数据划分及结果聚合等多个方面,需精心设计以确保稳定性和高效性。 6. 资源管理:特别是在多用户环境或云平台下,有效分配和使用GPU资源非常重要。 通过上述措施的有效实施,我们可以提高CNN在GPU上的训练速度与效率。随着深度学习技术的进步,未来还将出现更多高效的训练技术和工具支持更复杂的模型训练。