Advertisement

TM4C1294XL定时器触发ADC采样及DMA的乒乓模式数据传输

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目介绍在TM4C1294XL微控制器上配置定时器、ADC与DMA实现高效的数据采集和处理,采用乒乓缓存技术优化内存访问效率。 TM4C1294XL定时器触发ADC采样,并使用DMA进行数据搬运。DMA工作在ping-pong模式下。相关细节可以在博客文章中找到(此处省略链接)。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • TM4C1294XLADCDMA
    优质
    本项目介绍在TM4C1294XL微控制器上配置定时器、ADC与DMA实现高效的数据采集和处理,采用乒乓缓存技术优化内存访问效率。 TM4C1294XL定时器触发ADC采样,并使用DMA进行数据搬运。DMA工作在ping-pong模式下。相关细节可以在博客文章中找到(此处省略链接)。
  • STM32F407 HAL库中使用ADCDMA(TIM+ADC+DMA
    优质
    本教程介绍在STM32F407微控制器上利用HAL库配置定时器、ADC和DMA,实现定时器触发ADC采样并将采集的数据通过DMA方式高效传输的全过程。 在STM32F407系列微控制器的开发过程中,结合定时器、ADC(模数转换器)与DMA(直接存储器访问)控制器可以显著提高数据采集及传输效率。本段落将指导你如何使用STM32 HAL库来实现通过定时器触发ADC1单通道采集,并利用DMA进行数据传输,最后通过串口输出电压值。具体操作中,我们将读取ADC1的通道5(对应引脚PA5),并将转换得到的电压值发送到串口助手上显示出来。
  • STM32ADCDMA(由
    优质
    本文章介绍了如何在STM32微控制器中配置ADC并通过DMA进行数据传输的方法,重点讲解了使用定时器作为触发源来启动ADC转换的过程。 STM32之ADC+DMA传输(定时器触发):本段落介绍了如何在STM32微控制器上使用ADC结合DMA进行数据采集,并通过定时器触发来实现高效的数据传输,从而减少CPU的负担并提高系统的响应速度。这种方法特别适用于需要连续监测传感器信号的应用场景中。
  • STM32F407利用3ADC双通道同步DMA...
    优质
    本文介绍了如何使用STM32F407微控制器通过定时器3来触发ADC对两个不同通道进行同步采样,并将数据通过DMA传输至存储区域,实现高效的数据采集与处理。 为了对两路信号进行ADC同时采样,并确保这两路信号的每次采样同步进行,需要将ADC设置为“多重ADC模式”中的“规则同时模式”,并选择其中的“双重ADC模式”。这是因为一路信号会用作另一路信号解调时的参考。由于待采集的心率范围不确定,但要求每次采样的时间间隔精确,因此需使ADC采样频率可调节,且不能简单地使用延迟函数实现这一需求。为此,应确保ADC转换由定时器触发(具体为“上升沿触发”模式)。
  • STM32F4x多路ADC结合外部TIM3控制DMA
    优质
    本项目介绍如何使用STM32F4系列微控制器实现通过多通道ADC配合外部定时器TIM3精确控制采样时机,并利用DMA进行数据高速传输,适用于高精度数据采集系统。 在STM32F4x系列微控制器上使用多路ADC,并通过外部定时器TIM来控制采样时间。利用DMA将采集的数据直接输出到缓冲区(buff),并通过串口依次打印每个通道的采样数据。
  • STM32CUBEMX中使用HAL库实现ADC集和DMA
    优质
    本文介绍了在STM32开发环境中,利用CubeMX配置定时器触发ADC采样并通过DMA进行数据传输的具体步骤与方法。 TRGO定时器触发PWM中心点采集电压,适用于数控电源。
  • Cube配置2启动双ADC同步DMA
    优质
    本项目介绍如何在Cube环境中为微控制器配置一个定时器以启动两个ADC的同步采样,并通过DMA进行数据传输,提高采集效率。 本项目旨在使用Cube生成一个程序,在STM32L476RGT6单片机上通过定时器触发ADC1和ADC2的同步采集,并利用DMA进行数据传输。具体而言,采用定时器2来控制ADC采样周期,调整定时器2的时间间隔可以改变ADC的采样频率。 对于STM32系列微控制器来说,在使用ADC时需考虑其完成一次转换所需总时间包括了采样时间和转换时间两部分:即“ADC完成采样时间 = 采样周期 + 12个转换周期”。例如,当ADC时钟为15MHz且设定的采样周期是3个周期,则总共需要15个周期来完成整个过程(因为有3次采样的需求加上固定的12次转换),换算成实际的时间就是1微秒。 针对STM32L476RGT6型号,其ADC时钟频率为32MHz。根据官方文档和相关技术资料,在这种情况下最小的可选采样周期是2.5个ADC时钟周期。
  • Cube配置ADC1和ADC2同步规则DMA
    优质
    本项目实现通过Cube HAL库配置定时器来周期性启动ADC1与ADC2的同步规则采样,并使用DMA进行数据传输,提高系统采集效率。 在Cube配置中使用定时器触发ADC1和ADC2的同步规则采样,并通过DMA传输数据。所选单片机型号为STM32L476RGT6,采用定时器2对ADC进行触发操作。调整定时器2的周期可以改变ADC的采样速率,在程序设置中设定的是1MHz的采样率,确保ADC1和ADC2同时采集数据并通过DMA传输这些数据。
  • STM32F407双通道ADC驱动主函DMA
    优质
    本项目实现STM32F407微控制器通过双通道ADC采集模拟信号,并利用定时器触发启动ADC转换,采用DMA方式高效传输数据至内存中。 对于STM32F407的双通道ADC驱动主函数来说,其设计是通过定时器触发,并利用DMA进行数据传输。
  • 使用HAL库配置TIMADC并利用DMA至内存区域。
    优质
    本教程详解了如何运用STM32 HAL库设置TIM定时器以定期触发ADC转换,并通过DMA技术高效地将数据传输到内存中,适用于嵌入式系统开发人员。 使用HAL库配置通用定时器TIM来触发ADC采样,并通过DMA将数据搬运到内存空间。