Advertisement

交直流充电桩与电力载波通信应用资料

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资料深入探讨了交直流充电桩的工作原理、设计及优化方案,并结合电力载波通信技术的应用实践,旨在提高充电效率和管理系统的智能化水平。 我整理了一些近几年关于交直流充电桩研究的相关论文以及电力载波通信(PLC)技术在充电桩中的应用资料。如果有需要,我可以帮忙在知网、万方下载相关文献。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本资料深入探讨了交直流充电桩的工作原理、设计及优化方案,并结合电力载波通信技术的应用实践,旨在提高充电效率和管理系统的智能化水平。 我整理了一些近几年关于交直流充电桩研究的相关论文以及电力载波通信(PLC)技术在充电桩中的应用资料。如果有需要,我可以帮忙在知网、万方下载相关文献。
  • CAN过程分析 20190417
    优质
    本文深入探讨了直流充电桩在CAN通信协议下的充电流程和数据交互机制,旨在优化充电效率与安全性。撰写于2019年4月17日。 电动汽车直流充电桩CAN报文解析及其充电流程。
  • MATLAB_simulink_模型_charger_1.rar
    优质
    该资源包含使用MATLAB与Simulink构建的交流充电桩仿真模型(charger),适用于电力系统中充电设施的设计与分析。 在电动汽车领域,充电基础设施是至关重要的环节之一,而交流充电桩作为其中一种常见的设备,在其设计与模拟方面具有重要意义。本段落将深入探讨基于MATLAB SIMULINK的交流充电桩模型,旨在理解和优化充电桩的工作原理、控制策略以及系统性能。 MATLAB是一款强大的数学计算软件,广泛应用于工程和科研等领域。SIMULINK则是MATLAB的一个扩展工具,专门用于建立动态系统的可视化模型,并支持仿真、原型设计及参数调试等功能。在电动汽车充电系统中,SIMULINK提供了构建复杂系统模型的便捷平台。 交流充电桩主要由以下几个部分组成: 1. **电源接口**:通过AC-AC或AC-DC转换器将电网提供的交流电转化为适合电动汽车电池充电所需的电压和电流。 2. **控制单元**:负责管理充电桩的操作流程,包括安全保护措施(如过压、过流保护)、充电模式的选择(例如恒定电流与恒定电压模式)及通信协议的处理(比如CCS和CHAdeMO等标准)。 3. **功率变换模块**:此部分的核心是逆变器,它将交流电转换为直流电,并根据电池的状态调整输出电压和电流。 4. **电池管理系统接口**:充电桩必须能够与车辆中的电池管理系统进行通信,获取包括荷电状态(SOC)、温度在内的多项关键信息,以优化充电策略。 5. **用户界面**:提供给用户的操作界面用于显示充电进度、费用等信息,并接受开始或停止充电的操作指令。 在SIMULINK中,可以通过创建每个组件的子系统模型并将其连接起来的方式构建完整的充电桩模型。例如,可以利用电力库和控制库中的模块来建立功率变换部分,使用信号处理功能实现BMS通信,以及通过离散逻辑模块执行必要的控制逻辑操作。 借助仿真技术,在SIMULINK中我们可以研究不同工况下充电桩的表现情况,包括充电效率、瞬态响应及热效应等。同时也能测试在异常情况下(如电网电压波动或电池故障)的安全保护机制是否有效运行。 此外,参数化设计是SIMULINK的重要特性之一,这意味着可以快速调整模型中的各种参数值以适应不同类型的电动汽车和不同的电力环境条件,在充电桩的设计优化过程中非常有用。 基于MATLAB SIMULINK的交流充电桩模型是一种强大的工具,它能够帮助工程师更深入地理解充电桩的工作机制,并进行性能分析与改进工作。这种技术的应用将有助于推动整个电动汽车充电领域的进一步发展。
  • 2016年国标的标准及系列标准
    优质
    本资料深入解析了2016年中国实施的电动汽车充电设施国家标准及其配套的交、直流充电桩技术规范,为行业提供了重要的指导和参考。 《充电桩标准(2016国标):交流与直流充电桩技术详解》 作为电动汽车充电基础设施的关键部分,充电桩的安全性和效率直接影响着整个行业的发展。2016年我国发布了一系列关于充电桩的标准,旨在规范充电设施的设计、制造、安装、运行和维护过程,确保其性能可靠且使用安全。本段落将深入探讨2016年国标中涉及的交流与直流充电桩的相关知识点。 一、交流充电桩标准 1. 安全要求:根据GBT 27930-2015《电动汽车非车载传导式充电机与电池管理系统之间的通信协议》的规定,确保在充电过程中不会出现电气安全问题,如短路或过载等危险情况。 2. 功能需求:交流充电桩通常提供单相或三相的交流电源,并通过车载转换器将电流转化为直流电为电动汽车电池充电。标准规定了充电桩需要具备自动识别车辆、控制充电过程启停以及显示充电状态等功能。 3. 接口规范:国标还对交流充电桩与汽车接口进行了定义,即采用IEC 62196 Type 2接口,确保兼容性并方便用户使用。 二、直流充电桩标准 1. 高功率输出能力:直流充电桩能够直接向电池提供直流电,并且其功率通常远超交流桩,可以满足快速充电的需求。GBT 16847.1-2015《电动汽车直流充电设备 第一部分:通用要求》对直流充电桩的功率、电压和电流等参数进行了详细规定。 2. 安全保护措施:设计上必须包含多重安全机制来防止过温、过压或过流等情况的发生,并且需要具有充电枪锁定功能,以确保在充电期间的安全性。 3. 通讯协议要求:直流充电桩需遵循GBT 27930-2015中的通信标准与电动汽车进行信息交换(例如电池状态和充电参数),从而实现智能化的充电过程管理。 三、充电站建设及运营 除了上述技术规范之外,2016年国标还涵盖了从规划到运维等各个环节的标准制定。比如,在布局时需考虑电网接入方式、消防安全以及人车流动路线等因素;在施工阶段则必须保证电气工程符合规定以减少潜在的安全隐患。 综上所述,通过设定严格的技术和安全标准,2016年的国家标准推动了我国电动汽车充电基础设施的标准化进程,并为充电桩高效且安全地运行提供了保障。这将有助于促进新能源汽车行业的健康发展。
  • 路解析
    优质
    《直流充电桩电路解析》一文深入剖析了电动汽车直流充电技术中的关键电路设计与工作原理,旨在为工程师提供实用的技术参考和创新思路。 本段落介绍了直流充电桩的基本概念及其分类方式,并深入解析了直流充电桩的专用电路。直流充电桩是为电动汽车提供充电服务的重要设备,类似于加油站中的加油机。它通过内部AC-DC转换模块将交流电转换成直流电,以给电动汽车的动力电池进行充电。根据安装方式、地点和接口数量等不同维度,可以对充电桩进行分类。本段落特别关注了直流充电桩的专用电路设计,为读者提供了深入了解这一技术的机会。
  • 欧洲标准开发指南
    优质
    本指南详述了在欧洲市场中设计、安装和使用直流充电桩的标准与技术要求,旨在帮助开发者遵循统一规范,确保电动汽车充电设备的安全性及兼容性。 欧标直流充电桩桩端应用开发指南 本资源摘要基于 GBT 27930 标准编写,旨在指导开发者如何在符合 GBT 27930 的充电桩上使用 ISO15118 技术。内容涵盖了充电桩的发展历程、充电技术、CAN信号格式、充电状态图、DC_Level2系统配置以及开发工具包和EVCC CAN信号的详细说明。 充电桩发展历史 ---------------- 该指南从2017年3月10日首次发布,版本为V1.0。之后经过多次更新,增加了接口图、新的CAN信号格式、充电状态图及DC_Level2系统配置等部分,并于同年10月25日发布了最新版V1.43。 充电技术 ---------- 本指南详细介绍了包括CCS(联合充电系统)、ISO15118和GBT在内的多种充电技术。其中,CCS支持PWM信号应用与IP数据包通信等多种模式;ISO15118为国际标准,定义了充电桩与电动车之间的通信协议;而GBT则是一种基于CAN总线的高效充电协议。 CAN 信号格式 ------------- 指南中详细解释了GBT 27930和ISO15118两种标准下的CAN信号格式。这两种规范分别规定了充电桩及电动车间的通讯规则。 充电状态图 ---------- 本部分提供了一系列图表,展示了从插入充电枪到完成绝缘测试、参数交换直至开始充电的整个过程中的各个阶段。 DC_Level2 系统配置 ------------------- 详细介绍了如何进行包括充电桩和电动车在内的系统设置,以及相关参数设定等内容。 开发工具包配置 -------------- 提供了EV Charger及电动车相关的开发工具包配置指南。 EVCC CAN 信号 ------------- 深入解析了与充电过程密切相关的EVCC的CAN信号格式及其在充电参数交换中的应用。
  • CP汽车号原理图.zip
    优质
    本资源为交流充电桩CP汽车通信信号原理图的详细设计文件,包含充电桩与电动汽车之间的通信协议和电气连接信息。适合工程师和技术人员参考学习。 汽车交流充电桩充电握手信号原理图适合初学者理解,并可以直接应用于国标交流充电桩CP信号电路的设计与改造中,适用于3KW和7KW的充电桩。
  • 源和接口(CAN、RS485、RS232)的隔离技术
    优质
    本文探讨了直流充电桩中电源与通信接口(CAN, RS485, RS232)间采用的隔离技术,旨在提高系统稳定性和安全性。 直流充电桩是一个典型的强弱电结合的电子系统,其中充电功率流的强电部分与后台控制、显示、通讯及计费等功能的弱电系统集成在一起,电磁兼容性和可靠性问题较为复杂。接下来简要介绍电源隔离以及CAN总线和RS485/232通信接口在直流充电桩中的应用。 图1展示了充电桩的基本结构示意图。 一、直流桩的主要通信方式 1. CAN-bus:根据GBT 20234.1-2015《电动汽车传导充电用连接装置》的规定,直流充电桩通过CAN接口与电动汽车进行数据交换。每个充电插头都配备了一个CAN接口,对于支持多个插座的充电桩(如一桩两充或一桩四充),则会配置相应的多路CAN总线以实现通信需求。此外,在控制单元和充电机之间通常也采用CAN通信协议来协调整个充电流程的操作与监控。
  • 欧标EVSE时序(CAN)(190423-)
    优质
    本资料详细解析了符合欧洲标准的直流充电桩(EVSE)在电动汽车充电过程中的CAN通信协议及具体时序,旨在为工程师和研究人员提供深入的技术参考。 【欧标直流充电桩-EVSE充电时序(CAN)详解】 欧标直流充电桩是电动汽车充电基础设施的重要组成部分之一,它遵循欧洲标准,并使用CAN(Controller Area Network)通信协议进行数据交互。这一接口在直流充电桩与电动汽车之间起到了关键的通讯桥梁作用,确保了整个充电过程的安全性和高效性。 1. **CAN接口映射与分类** - CAN通信速度设定为500kbps,专用于直流Combo Charger,并不支持GBT27930接口。 - CAN消息ID分为固定ID和可变ID两类,以防止在数据传输过程中出现错误。其中,固定ID需要在系统初始化时预设,例如:CF_EVSEIsolationStatus_isUsed=1(几乎强制),CF_EVSEMaximumVoltageLimit_isUsed=1(强制),CF_EVSEMaximumCurrentLimit_isUsed=1(强制)和 CF_EVSEMaximumPowerLimit_isUsed=1(强制)。默认值推荐为充电应用的值,例如:CR_ExpectedEVServiceCategory=0,CR_ExpectedEVRequestedEnergyTransferMode=3,CR_EVSEEnergyTransferMode=3以及CF_PaymentOption=1等。 2. **充电时序** - 在电动汽车通信控制器(EVCC)与电动汽车服务设备(EVSE)之间的通信过程中需要遵循一定的步骤。例如,在发送SessionSetupReq消息之后,如果EVCC因非关键原因(如用户操作)希望停止当前会话并且尚未发送ReadyToChargeState为“TRUE”的PowerDeliveryReq消息时,EVCC不应立即改变CP状态。此时,EVCC应先发送SessionStopReq作为下一个请求消息,并等待相应的响应。 3. **通信流程管理** - 在发出SessionSetupReq之后和PowerDeliveryReq之前,如果由于非关键原因(例如用户交互)需要终止会话,则应该发送SessionStopReq而不是直接改变CP状态。接着,EVCC应等候到收到SessionStopRes的回应后才能继续下一步操作。 4. **安全与兼容性** - 通过精细管理CAN接口和标准化通信时序,欧标直流充电桩能够在不同类型的电动汽车之间提供良好的兼容性和安全性保障,并且能够有效避免由于通信错误导致的各种潜在风险。 总之,欧标直流充电桩的CAN通讯机制是其核心功能之一。它依靠规范化的消息ID分配、默认值设定以及严格的通信流程控制来实现高效安全的数据交换,从而确保充电过程顺利进行。