Advertisement

南北向柔性光伏支架系统图.zip

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资料包提供详细的南北向柔性光伏支架系统设计图纸,包括结构布局、安装细节和施工指导等信息。适合太阳能项目工程师和技术人员参考使用。 柔性光伏太阳能组件支架系统包括光伏组件、钢丝绳、上部支架结构、地锚基础及非结构件组成。该系统采用柔性的钢丝绳代替刚性横梁,降低了对构件变形的要求,并适用于平地、山地、鱼塘、河流和湖泊等复杂地形或大跨度场地条件。 南北方向的柔性光伏太阳能组件支架系统将组件上的荷载通过柔性钢丝绳传递给上部支架结构。为了满足最佳倾角要求,阵列采用南北布置方式,这种布局特别适用于坡度较大的山地环境。然而,该系统的结构形式较为复杂,并且在施工和安装过程中可能会遇到一些不便之处。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .zip
    优质
    本资料包提供详细的南北向柔性光伏支架系统设计图纸,包括结构布局、安装细节和施工指导等信息。适合太阳能项目工程师和技术人员参考使用。 柔性光伏太阳能组件支架系统包括光伏组件、钢丝绳、上部支架结构、地锚基础及非结构件组成。该系统采用柔性的钢丝绳代替刚性横梁,降低了对构件变形的要求,并适用于平地、山地、鱼塘、河流和湖泊等复杂地形或大跨度场地条件。 南北方向的柔性光伏太阳能组件支架系统将组件上的荷载通过柔性钢丝绳传递给上部支架结构。为了满足最佳倾角要求,阵列采用南北布置方式,这种布局特别适用于坡度较大的山地环境。然而,该系统的结构形式较为复杂,并且在施工和安装过程中可能会遇到一些不便之处。
  • 东西.zip
    优质
    本资料包提供了一套详细的东西向柔性光伏支架系统设计图纸,包括平面布置、结构细节及安装指导等信息。适合太阳能项目的设计与施工参考使用。 柔性光伏太阳能组件支架系统包括光伏组件、钢丝绳、上部支架结构、地锚基础及非结构件组成。该系统采用柔性的钢丝绳代替刚性横梁,降低了对构件变形的要求,并适用于平地、山地、鱼塘、河流和湖泊等复杂地形或大跨度场地条件。 在东西方向的柔性光伏太阳能组件支架系统中,组件上部荷载通过柔性钢丝绳传递至上部支架结构。由于南北坡度较小,在经济性考虑下,阵列采用东西布置方式,这种形式适用于山地地形复杂且南北坡度较小的情况。然而,该结构形式较为复杂,并且施工安装相对不便。
  • 发电中的力学特介绍
    优质
    本文探讨了柔性支架在光伏发电系统中的应用,重点分析其独特的力学性能及其对光伏板稳定性与发电效率的影响。 文档利用有限元等工具详细介绍了一种新型光伏支架形式。该柔性支架采用钢丝绳作为组件承载体,显著减少了钢材的使用量,并提高了土地利用率,堪称光伏行业的一次革命性创新。
  • 太阳跟踪设计.zip
    优质
    本资料探讨了一种高效的太阳跟踪光伏支架系统的创新设计方案,旨在提升光伏发电效率。文档详细分析了太阳能板的最佳倾斜角度与旋转方向,并提供了详细的结构设计和实施步骤,适用于研究及工程应用。 本科期间的毕业设计包括了详细的说明书、Proteus仿真结果、流程图以及用C语言编写的程序。本项目采用的是51单片机,并使用ADXL345传感器来测量倾斜角度。从机械结构的设计到软硬件的整体设计和仿真实验,都进行了全面的研究与开发。
  • 的太阳能设计
    优质
    本研究聚焦于优化光伏系统中太阳能支架的设计,旨在提高光伏发电效率及稳定性,探索材料选择、结构布局等关键技术问题。 太阳能光伏系统支架设计是安装过程中的关键环节,直接影响系统的稳定性和发电效率。本段落将深入探讨太阳能光伏系统支架的设计原则、考虑因素以及荷载计算等方面的知识。 首先,在进行支架设计时需要遵循一系列基本原则。首要的是确保结构的安全性,这包括抵抗风荷载、雪荷载和地震荷载等各种自然环境下的力学负载。其次,安装的便捷性和可维护性也是重要考量点,以便于未来调整与维修工作顺利开展。此外,经济性同样不可忽视,在保证性能的同时尽可能降低成本。 设计过程中需考虑多种因素:首先是地理环境的影响,包括地理位置、气候条件和地形地貌等;不同地区的风速、降雪量及地震烈度等因素都会对支架的强度和稳定性提出不同的要求。其次是光伏组件类型与尺寸的选择,这直接影响到支架的设计规格及其承载能力。最后还需注意地面或屋顶承重问题,确保安装后不会给建筑结构带来损害。 荷载计算是设计中的核心环节之一,主要包括静态荷载(如自重、雪压和风力)以及动态荷载(例如由强风引起的振动及地震作用)。在进行这些负载的估算时通常会采用安全系数以应对潜在的风险或不可预见的情况。具体而言,在评估风荷载时需要根据当地的气候数据结合光伏阵列的具体布局来确定;而雪压则参考历史气象记录并考虑倾斜角度和阴影效应的影响;至于抗震性能,则需依据建筑物的抗震标准及所在区域的地震参数进行考量。 实际设计中还应关注支架材料的选择,以提高其耐腐蚀性。由于太阳能系统通常暴露于户外环境中,会受到雨水、阳光以及温度变化等因素的影响,因此推荐使用不锈钢或热浸锌钢材等耐用材质来延长使用寿命。 此外,在优化发电效率方面也需特别考虑支架的朝向和倾斜角度:一般建议光伏组件面向正南(北半球)以获取最佳日照,并根据当地纬度及季节调整最优倾角以便全年都能获得最理想的光照条件。 综上所述,太阳能光伏系统支架设计是一项多学科知识交叉的任务。通过精确计算荷载并进行合理的结构规划,可以确保整个系统的稳定性和高效运行。
  • 负荷计算.doc
    优质
    本文档探讨了光伏支架在不同环境条件下的负载计算方法,旨在确保光伏系统的结构安全与长期稳定性。 光伏支架的载荷计算是太阳能发电系统设计中的关键环节之一,主要涉及支架的强度、稳定性及其在各种环境条件下的性能表现。这些支架通常用于支撑4米以下的太阳能电池阵列,并需要承受来自不同方向的各种外力,包括风压、积雪以及地震力等。 选择合适的结构材料至关重要。计算弯曲强度的基础是截面二次矩IM和截面系数Z,它们决定了支架在受载时抵抗变形的能力。固定负载主要包括组件重量、框架自重以及其他附加负荷;而风压则由多种因素决定,如风速、风力系数及迎风面积等。积雪承载能力需考虑垂直于光伏板表面的雪荷载量,地震荷载则是基于支架所承受的水平向地震力。 在计算过程中需要综合考量不同环境条件下的负载组合情况,例如常规地区、多雪区域或强风暴期间以及地震发生时等情况,并确保每种工况下总负荷的安全。此外,在分析中还需要特别关注关键点如A-B、B-C和C-D之间的弯曲应力与变形,同时也要考虑支撑臂的抗压曲强度及拉伸力要求,安装螺栓的承载能力同样重要。 基础稳定性计算也是不可或缺的一部分,包括风载荷下防止滑移或倾倒的能力评估以及地基沉降等问题。在强风作用时应确保结构不发生位移、塌陷等现象,并且满足一定的安全裕度标准。这些分析通常涉及水平方向的稳定性和垂直支撑力的安全性。 计算中的一个重要公式是用于确定风压载荷,即W=Cw×q×Aw(其中Cw代表风力系数,q为设计速度压力,而Aw则是迎风面积)。此外,在评估积雪承载能力时需考虑平均单位质量、坡度因素及实际覆盖面积等因素。至于地震作用下支架的负载计算,则通常依据特定公式进行,并且需要考虑到具体的地震活动特性。 综上所述,光伏支架载荷的设计是一个复杂的工程问题,它要求对各种环境下的外力做出精确评估,选择适当的材料和结构设计以确保长期的安全运行性能。
  • _matlab仿真_发电.zip
    优质
    本资源包含一个关于光伏发电系统的Matlab仿真项目,适用于研究和学习光伏技术。文件内含详细的模型构建、仿真分析及结果讨论,帮助用户深入理解光伏发电的工作原理和技术细节。 独立光伏发电系统的MATLAB仿真以及一个完整的光伏发电系统的设计与分析。
  • 关于结构整体能的研究.pdf
    优质
    本文档《关于光伏支架结构整体性能的研究》探讨了影响太阳能光伏系统中支架设计和材料选择的关键因素,分析了不同环境条件下的结构稳定性和耐久性。 在研究光伏支架结构的整体性能过程中,文章从多个角度深入探讨了光伏支架的设计方法,并讨论了提高其整体质量所面临的挑战及解决途径。 首先,在设计目的与要求方面: - 设计目的是确保技术先进性、经济合理性以及安全适用性和质量保证的基础上满足功能需求。 - 结构的安全性至关重要:它必须能够承受正常施工和使用过程中的载荷,防止倒塌或其他安全事故的发生。 - 耐久性的保持也是关键要素之一,材料在常规维护条件下不应出现过快的风化、老化或腐蚀现象。 - 可靠性和可靠度则是确保结构能够在设计使用寿命内满足规定条件下的预定功能的要求。可靠性是安全适用性与耐久性的综合体现;而可靠度则是一个概率衡量指标。 其次,在支架所受载荷分类上: - 永久载荷:在结构使用年限中,其值不变或变化可以忽略不计的负荷。 - 可变载荷:这类负荷随时间的变化而在设计基准期内出现和消失。 - 偶然性负载:虽然罕见但在发生时具有极大强度且作用时间短促。 此外,文章还分析了支架结构性能: - 强度定义为在特定荷载下能够承受的最大应力或内力; - 刚度指的是抵抗变形的能力; - 稳定性则是指受力后保持平衡状态的特性。 文中也指出光伏支架与建筑钢结构之间的差异,并且提出现有设计软件(如PKPM)在处理光伏支架问题时存在局限,比如缺乏特定截面数据和框架结构计算合理性等不足之处。因此,在现阶段的设计工作中仍需注意对整体性能的关注以及优化方法的应用。 最后文章强调了试验验证理论设计的重要性以确保设计的可靠性,并鼓励设计师们采用更科学的方法来提升光伏支架的质量、降低成本并优化设计方案,从而推动整个行业的进步和发展。
  • PV_Array_RAR_PV_Simulink___模型_电池
    优质
    简介:PV_Array_RAR_PV_Simulink是一款用于光伏系统的仿真工具,包含详细的光伏电池模型,适用于研究和教学。 在本主题中,我们将深入探讨如何使用MatlabSimulink来模拟光伏电池板的工作原理。Simulink是MathWorks公司开发的一种图形化仿真和建模工具,特别适合于动态系统的研究,包括电力系统和能源转换系统,如光伏电池。 **光伏电池基本原理** 光伏电池是一种将太阳能转化为电能的设备,其核心是光伏效应。当太阳光照射到半导体材料(如硅)上时,光子与电子相互作用,使电子从价带跃迁到导带,形成电流。这个过程就是光伏效应,也是光伏电池发电的基础。 **Simulink模型** 在Simulink中,我们可以通过构建一个包含光伏电池组件、负载、逆变器等元素的模型来模拟光伏电池板的工作。例如,在`pv_array.mdl`文件中可以找到这样一个模型的源代码。通过设置不同的参数如太阳辐射强度、温度和电池效率等,我们可以研究不同条件下的光伏电池性能。 **光伏电池模块** 在Simulink模型中可能会包含以下关键模块: 1. **光伏电池模型**:根据给定的光照条件和温度计算出电压和电流特性。 2. **负载模型**:代表用电设备,可以是恒定电阻或更复杂的负载模式来消耗电能。 3. **逆变器模型**:将直流电转换为交流电供电网使用。该模块考虑了效率及控制策略的影响。 4. **环境条件模块**:设置光照强度和温度等参数以影响光伏电池性能的模拟结果。 5. **能量管理系统**(如果需要):用于优化电池输出,确保在不稳定光线下仍能稳定供电。 **模型分析** 运行Simulink模型后可以进行以下几种类型的分析: - **性能评估**:观察不同光照和温度条件下光伏电池产生的功率变化情况。 - **稳定性研究**:模拟从日出到日落的周期性环境变化,以了解系统的响应特性及长期稳定性的表现。 - **故障模拟**:测试逆变器或其他设备发生故障时系统的表现能力。 - **优化研究**:调整参数设置来探索最佳配置方案,从而提高能量转换效率。 **应用** 该Simulink模型对于教育、科研和工程设计领域具有重要意义。它不仅可以帮助学生理解光伏电池的工作原理,还可以用于验证新设计方案的有效性或对现有系统的性能进行改进分析。 总结来说,`pv_array.mdl`文件中的模拟程序可以帮助我们学习并研究在各种环境下光伏电池的电能转换过程及其表现情况。通过对模型深入的理解和分析可以增强人们对设计和优化光伏系统的能力。
  • 5kWPV.zip_5KW_PSCAD并网_pscad模型_电站
    优质
    本资源提供了一个基于PSCAD仿真软件的5KW光伏并网系统的详细模型。该模型适用于研究和教学用途,涵盖光伏电站的关键参数与特性,帮助用户深入理解光伏并网技术及运行机制。 5KW的光伏PSCAD模型已开发完成并可运行,适用于进行光伏电站并网仿真分析。