Advertisement

基于MRAS的无速度传感器矢量控制系统的仿真-MRAS_SVPWM_SDL.mdl

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究构建了MRAS_SVPWM_SDL模型,实现了无速度传感器矢量控制系统在MATLAB环境下的仿真分析。通过该模型验证了电机控制算法的有效性与稳定性。 最近调通了几个基于MRAS无速度矢量控制模型,与大家分享一下以共同进步,欢迎回帖讨论!在调试过程中我发现了几点需要注意的地方:1)系统的采样率最好设置得小一些(设为5*e-6),如果过大,则无论怎样调整MRAS中的PI参数也难以成功。2)在调节MRAS之前,先将有速度反馈模型中几个PI参数调好非常重要,如果有速度矢量控制的PI没有调试好就直接尝试调试MRAS的话会很困难。 下图展示了第二个模型在加速、减速和负载变化过程中的实测转速与辨识转速仿真波形。从图像来看,在这些过程中估算出来的转速表现得相当不错。希望这能对大家有所帮助,如果发现有问题或有疑问,请积极回帖讨论。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MRAS仿-MRAS_SVPWM_SDL.mdl
    优质
    本研究构建了MRAS_SVPWM_SDL模型,实现了无速度传感器矢量控制系统在MATLAB环境下的仿真分析。通过该模型验证了电机控制算法的有效性与稳定性。 最近调通了几个基于MRAS无速度矢量控制模型,与大家分享一下以共同进步,欢迎回帖讨论!在调试过程中我发现了几点需要注意的地方:1)系统的采样率最好设置得小一些(设为5*e-6),如果过大,则无论怎样调整MRAS中的PI参数也难以成功。2)在调节MRAS之前,先将有速度反馈模型中几个PI参数调好非常重要,如果有速度矢量控制的PI没有调试好就直接尝试调试MRAS的话会很困难。 下图展示了第二个模型在加速、减速和负载变化过程中的实测转速与辨识转速仿真波形。从图像来看,在这些过程中估算出来的转速表现得相当不错。希望这能对大家有所帮助,如果发现有问题或有疑问,请积极回帖讨论。
  • MRAS仿-MRAS_SVPWM_MT_FOC.mdl
    优质
    本研究设计了一种基于模型参考自适应系统(MRAS)的无速度传感器矢量控制系统,并利用SVPWM技术进行了MATLAB仿真,验证了其在电机驱动中的有效性和精确性。模型为MRAS_SVPWM_MT_FOC.mdl。 最近我调试了一些基于MRAS无速度矢量控制的模型,并想与大家分享一下我的经验,希望能共同进步。欢迎各位回帖讨论。 在调试过程中我发现以下几点非常重要: 1. 系统采样率最好设置得小一些(例如5e-6),如果采样率过大,则无论怎样调整PI参数也无法使MRAS正常工作。 2. 在调节MRAS之前,应先将有速度反馈模型中的几个PI参数调好。如果没有先调整好有速度矢量控制的PI参数而直接调试MRAS的话,会很难成功。 下图是第二个模型在加速、减速和负载变化过程中的实测转速与辨识转速仿真波形,在这些过程中估算出来的转速表现都还不错。希望这对大家有所帮助,如果发现任何问题,请积极回帖讨论。
  • MRAS异步电机
    优质
    本研究提出了一种基于模型参考自适应系统(MRAS)的异步电机矢量控制系统,该系统能够在不使用速度传感器的情况下实现精确的速度和位置控制。通过优化算法调整参数,提高系统的鲁棒性和响应速度,适用于工业自动化领域。 由于电机定转子参数的变化,利用一般的转子磁链对转速进行估算会导致结果不准确。本段落采用积分型转子磁链的参考模型与可调模型构建了一个基于MRAS(模型参考自适应系统)的异步电机无速度传感器矢量控制模型。该模型提升了矢量控制系统的动态性能,并通过MATLAB/SIMULINK进行了异步电机无速度传感器矢量控制系统仿真,验证了所采用的速度估算方法的有效性及其对参数误差的鲁棒性。
  • 仿异步电机研究
    优质
    本研究致力于探索基于仿真的异步电机无速度传感器矢量控制技术,旨在提高系统的性能和可靠性,减少成本与复杂性。通过深入分析和优化算法设计,为工业自动化领域提供高效解决方案。 利用MATLAB/Simulink仿真工具构建了带有转矩、转速及磁链闭环的无传感器交流异步电机矢量控制系统,并对系统在启动、负载变化以及正反转等动态过程中的磁链、速度和转矩进行了分析,以验证该控制系统的仿真模型正确性。
  • MRAS应电动机方法
    优质
    本研究提出一种基于模型参考自适应系统(MRAS)的感应电动机无传感器速度控制策略,通过算法优化实现精确且稳定的电机转速控制。 为了应对传统感应电动机转速辨识算法仅限于识别电机转速而不考虑定子电阻变化对辨识结果影响的问题,本段落提出了一种基于MARS的改进型无速度传感器控制方法。该方法利用电压模型输出作为转子磁链和定子电阻的理想值,并采用电流模型输出来估算这些参数的实际值。依据MARS理论,将电压模型设为参考模型而电流模型则作为自适应调整模型,以此来进行电动机转速及定子电阻的辨识工作。仿真测试表明,该方法能够同时准确地识别出电机转速和定子电阻的变化情况,并有效解决了因定子电阻变化导致的电动机速度估计偏差问题,从而显著提升了感应电动机控制系统在低速状态下的性能表现。
  • 改进型MRAS应电机探究
    优质
    本研究聚焦于改进型模型参考自适应系统(MRAS)在无传感器感应电机控制中的应用,旨在提升系统动态响应及稳定性。通过优化算法实现精确转速估计,进而提高整个驱动系统的性能和可靠性。 在研究感应电机矢量控制系统的过程中,针对转速闭环控制环节的必要性以及受限于速度传感器成本、安装维护困难及工业现场环境恶劣等因素的影响,朱姝和李阳对无速度传感器技术进行了深入的研究,并提出了改进型模型参考自适应(MRAS)的无速度传感器矢量控制方案。他们利用MATLAB软件建立了感应电机无速度传感器转子磁链定向矢量控制系统模型并通过仿真验证了该系统的可行性与实用性。 感应电机矢量控制基于电动机的动态数学模型,将不能分离的转矩电流和励磁电流分离开来,并通过相位差90°的转矩电流和励磁电流分别进行控制以获得类似直流电动机的性能。在矢量控制中,基本思路是产生同样的旋转磁场,通过Park变换将三相坐标系中的交流电流转换为两相静止坐标系上的交流电流,再通过同步旋转变换等效于同步旋转坐标系上的直流电流。其目标在于让感应电机转子总磁通接近直流电动机的励磁磁通,从而实现转矩和励磁解耦。 在动态模型分析中,采用两相同步旋转坐标变换来实现矢量控制的关键是获得准确的转子磁链信号。该系统中的转子磁链模型主要分为电流模型和电压模型两种类型:其中电流模型通过测量电机电流估算出转子磁场;而电压模型则基于电机电压与电流变量进行估计。 无速度传感器矢量控制技术的研究始于上世纪70年代,学者们提出了多种方法来识别并计算电动机的速度,包括直接计算法、模型参考自适应法(MRAS)、扩展卡尔曼滤波器等。其中,模型参考自适应法是目前较为传统且广泛使用的一种方法。该方法通过设置不含未知参数的数学模型作为参考模型,并将含有待估算参数的数学模型设为可调节模型,利用输出量误差来形成自适应律以实时调整可调模型参数,从而实现控制对象输出跟踪参考模型的目标。 在MRAS速度辨识中,转子磁通估计法是常用的方法之一。具体而言,在此研究中作者采用了电压模型作为不含电机转速的参考模型,并使用含有电机转速信息的电流模型作为调节模型。通过基于两者之间误差构成自适应律来调整可调模型参数实现输出跟踪控制。 感应电机矢量控制技术的进步不仅促进了交流调速系统的快速发展,还推动了整个电机控制系统理论与实践的进步。通过对无速度传感器技术的研究和改进可以进一步降低成本并提高系统可靠性及适用性,特别是在工业现场等恶劣环境下使用该技术将具有更大的优势和发展前景。随着算法和技术的不断进步,未来的感应电机控制将会更加精确高效,并能满足更多样化的工业需求。
  • 理论与应用
    优质
    《无速度传感器矢量控制的理论与应用》一书深入探讨了电机驱动技术中的关键议题,尤其聚焦于无需使用机械速度传感器实现精确矢量控制的方法。本书不仅涵盖了该领域的基础理论知识,还详细介绍了相关算法、实现技术和实际应用场景,为从事电气工程和自动化控制的研究人员及工程师提供了宝贵的参考资源。 《无速度传感器矢量控制原理与实践》是一本值得一读的好书。
  • 异步电机.zip_speed-sensorless__异步电机__异步
    优质
    本资料探讨了针对异步电机的无速度传感器矢量控制系统,详细介绍并分析了实现该技术的关键技术和算法。适合深入研究电机控制领域的专业人士参考。 基于模型参考自适应的异步电机无速度传感器矢量控制系统是一种先进的控制策略,通过模拟参考模型来实时调整参数,实现对异步电机的有效驱动与精确控制,在不需要物理速度传感器的情况下也能保证系统的稳定性和性能。这种方法在工业自动化和机电一体化领域具有广泛的应用前景。
  • SPWM异步电机技术
    优质
    本研究探讨了基于正弦脉宽调制(SPWM)的异步电机矢量控制系统中的无速度传感器技术,通过先进的算法实现对电机转速和位置的精确估计。 在Simulink中建立基于SPWM发波方式的异步电机矢量控制仿真,并包含无速度传感器功能。
  • 永磁同步电机算法仿模型: 1. MRAS永磁同步电机 2. SMO永磁同步电机(反向)
    优质
    本文探讨了两种基于不同优化算法的永磁同步电机无传感器矢量控制仿真模型,包括基于MRAS和改进型SMO方法,以实现高性能的电机驱动系统。 永磁同步电机的控制算法仿真模型包括以下几种方法: 1. MRAS无传感器矢量控制; 2. SMO无传感器矢量控制(反正切+锁相环); 3. DTC直接转矩控制; 4. 有传感器矢量控制; 5. 位置控制。