Advertisement

ECC概述及其应用介绍

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
ECC(椭圆曲线密码学)是一种基于椭圆曲线上点群离散对数难题的安全算法。它在加密技术中提供高强度安全保障,并因其高效性被广泛应用于互联网安全协议、数字签名及密钥交换等领域。 密码技术在信息安全保护方面扮演着核心角色。1976年之前使用的加密方法采用相同的密钥进行信息的加密与解密,这类密码被称为对称密码,并且文档中的图1展示了这一过程的基本原理。而在1976年后发明了非对称密码系统(也称为公钥密码系统),如文档中图2所示,其中使用不同的密钥来进行加密和解密操作:用于加密的密钥被命名为公钥,而用于解密的密钥则被称为私钥;公钥可以公开分享,但私钥必须严格保密。非对称密码技术特别便于实现数字签名(如图2 (b)所示),这对于确保电子商务交易过程中的安全性和可靠性具有非常重要的意义。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ECC
    优质
    ECC(椭圆曲线密码学)是一种基于椭圆曲线上点群离散对数难题的安全算法。它在加密技术中提供高强度安全保障,并因其高效性被广泛应用于互联网安全协议、数字签名及密钥交换等领域。 密码技术在信息安全保护方面扮演着核心角色。1976年之前使用的加密方法采用相同的密钥进行信息的加密与解密,这类密码被称为对称密码,并且文档中的图1展示了这一过程的基本原理。而在1976年后发明了非对称密码系统(也称为公钥密码系统),如文档中图2所示,其中使用不同的密钥来进行加密和解密操作:用于加密的密钥被命名为公钥,而用于解密的密钥则被称为私钥;公钥可以公开分享,但私钥必须严格保密。非对称密码技术特别便于实现数字签名(如图2 (b)所示),这对于确保电子商务交易过程中的安全性和可靠性具有非常重要的意义。
  • SRIM程序简
    优质
    SRIM(Stopping and Range for Ions in Matter)是一种广泛应用于材料科学和离子束技术中的计算机模拟软件。它能够计算带电粒子与物质相互作用时的能量损失、射程以及损伤剖面等关键参数,为科研人员提供精确的理论依据。 SRIM是一组用于模拟计算离子在靶材中的能量损失和分布的程序。它采用Monte Carlo方法,通过计算机来追踪大量入射粒子的运动轨迹。在整个跟踪过程中,记录下每个粒子的位置、能量损失以及次级粒子的各种参数,并最终得出所需物理量的期望值及其统计误差。该软件支持用户选择特定类型的入射离子和靶材种类,并能够设定适当的加速电压。此外,SRIM还能计算不同粒子以不同的能量从不同位置和角度入射到靶材料中的情况。
  • 贝叶斯算法历史的
    优质
    简介:本文简述了贝叶斯算法的基本概念、原理及应用,并回顾了该算法从起源到发展的历史沿革。 关于贝叶斯算法及历史的介绍: 设D1、D2……Dn为样本空间S的一个划分,并且以P(Di)表示事件Di发生的概率(其中P(Di)>0,i=1, 2, …, n)。对于任一事件x,如果P(x)>0,则有以下公式成立: \[ P(Dj/x)=\frac{p(x/Dj)P(Dj)}{\sum_{i=1}^{n} P(X/Di)P(Di)} \] 此即贝叶斯公式的表达形式。
  • 人形机器人
    优质
    人形机器人是一种模仿人类外观和动作的智能机器设备,它们在娱乐、医疗、教育等领域展现出广泛应用潜力,并推动了人工智能技术的发展。 日本本田公司经过十多年的研发,在1997年推出了世界上领先的双足步行机器人P3系列。按照开发时间顺序,这些机器人的型号分别为P1、P2、P3等。 其中,被称为“二哥”的机器人是P2,身高为1.80米,体重达到120公斤。尽管外观看起来笨重,但行动却非常灵活,并且能够完成一系列复杂的动作,包括在平坦的地面上行走以及上台阶和使用扳手拧螺钉等任务。 相比之下,本田公司推出的另一款机器人是P3,其身高为160厘米,体重则有130公斤。
  • 格林函数
    优质
    格林函数是数学物理中用于求解线性偏微分方程的一种工具,通过它可以将边值问题转化为积分方程。本文介绍了格林函数的基本概念和应用范围。 ### 格林函数说明与简介知识点详述 #### 一、格林函数课程性质与目标 - **课程性质**:《格林函数方法》是一门旨在直接教授科研方法的课程,特别是针对那些希望掌握并运用格林函数解决实际物理问题的学习者。不同于传统理论课程,该课程更加注重实践操作和应用技巧。 - **学习目标**: - 掌握格林函数的基本概念及其在物理问题中的应用; - 能够独立完成基于格林函数的研究项目,在导师初期指导之后具备自主研究能力; - 了解格林函数的优势以及如何利用这些优势进行科学研究。 #### 二、格林函数方法的重要性及优点 - **量子力学中的挑战**:虽然哈密顿量是描述系统状态的核心,但在实际应用中能严格求解或近似求解的物理体系非常有限,特别是在多体系统中更是如此。 - **格林函数的优势**: - **避免波函数求解**:通过直接提供本征值、态密度等可测量物理量,无需繁琐地计算波函数; - **易于进行近似处理**:有多种标准的近似方法可以方便地应用于复杂系统; - **输运性质计算**:可用于精确描述粒子运动,并据此推导电流和电导等参数; - **多体系统的分析能力**:作为系综平均值,格林函数在处理有限温度下的多体量子统计问题时具有显著优势。 #### 三、格林函数方法的应用范围 - **适用系统**:特别适用于处理涉及粒子间相互作用的复杂体系,尤其擅长解决与统计力学相关的物理难题。 - **应用领域广泛**:原则上可以应用于几乎所有类型的物理研究中,提供强大的理论支持和分析工具。 #### 四、格林函数的分类 - **根据粒子间的相互作用类型划分**: - **单体格林函数**:当系统中的粒子之间没有显著的作用力时使用; - **多体格林函数**:用于描述具有复杂相互影响机制的多粒子体系。 - **依据处理对象的数量区分**: - **单粒子格林函数**:专注于单一电子或原子的行为研究; - **二粒子格林函数**:探讨两个实体之间的动力学关系及作用力; - **多粒子格林函数**:分析多个相关粒子组成的复杂系统。 #### 五、格林函数的历史背景与参考资料 - **历史背景**:这一概念最早由英国数学家乔治·格林在19世纪提出,尽管他的早期教育经历不为人知,但其对数学的贡献为后续研究奠定了坚实的基础。 - **参考文献**: - 王怀玉,《物理学中的格林函数方法》,香港教科文出版有限公司,1998年; - 王怀玉,《凝聚态物理的格林函数理论》,科学出版社,2008年; - 蔡建华等,《量子统计的格林函数理论》,科学出版社,1982年; - 卫崇德等,《固体物理中的格林函数方法》,高等教育出版社,1992年; - A.L.Fetter and J.D.Walecka,《多粒子系统的量子理论》, 科学出版社,1984年; - G.Mahan,《Many-Particle Physics》, Plenum Press, New York, 1981。 通过上述知识点的概述,我们可以清楚地看到格林函数作为一种重要的数学工具,在物理研究领域具有广泛的实用价值。无论是理论探索还是实验数据分析,它都为解决复杂问题提供了有效途径和技术支持。
  • 变片的基本原理
    优质
    本文章详细介绍了应变片的工作原理、分类及特点,并探讨了其在结构健康监测、应力分析等领域的广泛应用。 电阻应变式传感器(strainless type transducer)利用电阻应变计作为转换元件的传感器。这种类型的传感器由弹性敏感元件、电阻应变计、补偿电阻以及外壳组成,可以根据不同的测量需求设计成多种结构形式。 当受到所测力的作用时,弹性敏感元件会发生变形,并且附着在其上的电阻应变计也会随之发生形变。随后,该变形会被转换为电阻值的变化,从而可以用来测量包括但不限于力、压力、扭矩、位移、加速度和温度等物理量的数值。 尽管对于大范围内的应变量来说,其输出信号可能较弱且非线性较大,但可以通过一些补偿措施来改善性能。因此,在自动测试与控制系统中广泛使用这种传感器。 电阻应变片在受到外力作用时会产生机械形变,并导致电阻值发生变化,这体现了金属的应变效应。根据材料的不同,这些应变片可以分为两类:金属和半导体类型。其中,金属类型的又可细分为丝式、箔式以及薄膜式等几种形式;而半导体型则因其高灵敏度(通常是丝式或箔式的几十倍)及小横向效应等特点被广泛采用。 基于电阻应变效应与振动系统惯性力原理的结合,设计出了应变式加速度计。这种设备内部设置了一个“质量弹性系统”,在测量过程中将其固定于需要检测的目标物体上,使得仪器外壳随目标物一起震动,而直接测得的是质量块相对于外壳的位置变化。 应变式加速度计不仅结构简单且具有良好的低频特性,在实际的应用中表现优异。不过它的灵敏度相对较低,适用于1g~2g的量程范围,并能覆盖0到100Hz频率区间内的测量需求。通常会与动态应变仪配合使用以获取更准确的数据结果。
  • EM算法代码实现简
    优质
    本文介绍了EM(期望最大化)算法的基本原理和应用,并通过示例详细讲解了如何用Python等语言实现该算法。 EM算法是机器学习中的一个重要工具,全称为期望最大化算法。该算法主要包含两个步骤:E步(估计预期值)和M步(重新估计参数)。通过反复执行这两个步骤直至达到收敛条件来实现模型的优化。
  • 数模转换器原理DAC类型
    优质
    本文章详细介绍了数模转换器(DAC)的工作原理,并对各种类型的DAC进行了分类和说明。适合电子工程爱好者和技术人员阅读。 数模转换器(DAC)是将数字信号转化为模拟信号的器件。本段落将介绍数模转换器的概念、工作原理、主要技术指标以及不同类型DAC的特点。 1. 数模转换器概念 经过数字系统处理后的数据,有时需要再转化成模拟量以供实际应用需求使用,这种过程称为“数模转换”。执行这一功能的电路被称为数模转换器(Digital to Analog Converter),简称 DAC。 2. DAC 中的基本概念 分辨率: 在DAC中,分辨率指的是能够区分的不同输入数字值的数量。
  • 数模转换器原理DAC类型
    优质
    本文将简述数模转换器的基本工作原理,并详细介绍几种常见的DAC类型及其特点和应用场景。 数模转换器(DAC)的功能是将数字信号转变为模拟信号。接下来我们将详细介绍数模转换器的基本原理以及不同类型的DAC。
  • 高斯滤波原理详解
    优质
    本文深入解析了高斯滤波的工作原理,并探讨其在图像处理中的广泛应用,旨在帮助读者理解并掌握这一技术。 本段落将详细推导并解释高斯滤波的原理,从图片的基本概念开始讲解,并阐述滤波模板是如何产生的以及如何进行实际操作中的滤波过程。我们将全面覆盖从理论基础到应用实践的所有细节。