Advertisement

MEMS麦克风的音频设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
《MEMS麦克风的音频设计》一书专注于微机电系统(MEMS)技术在现代声学设备中的应用,深入探讨了如何利用MEMS麦克风优化音频系统的性能与可靠性。 MEMS麦克风的声学设计是微型电机械系统(Microelectromechanical Systems, MEMS)领域中的一个重要分支,它涉及微小麦克风单元的设计与优化以提升其性能。由于MEMS麦克风通常应用于移动通信设备、便携式电子产品和消费类电子产品中,因此它们需要具备高性能、小尺寸、高可靠性和低功耗的特点。 在设计MEMS麦克风的声学部分时,主要目标是确保声音信号能够高效且准确地从外界传输到麦克风振膜上。这一过程中的关键因素包括产品外壳、声学密封圈、印刷电路板以及麦克风本身的组件构成的声学路径。此路径不仅需要引导声波至振膜,还需提供足够的声学隔离以防止外部噪声干扰,并直接影响MEMS麦克风的频响特性,从而影响设备音频录制质量。 Helmholtz谐振器是一种特殊的声学结构,在声音设计中常被使用,尤其是在声孔设计方面。当通过狭窄传声孔进入较大空腔时,可能会引发特定频率下的共振现象。这种共振频率由传声孔的截面积、长度及空腔体积决定。在MEMS麦克风的设计过程中,可以通过调整不同参数(如传声孔直径、密封圈厚度和内径等)来优化Helmholtz谐振器的共振频率,进而改善其频响特性。 仿真软件COMSOL是进行声学设计的重要工具之一,能够建立声学路径模型,并对各种设计参数下麦克风的频响性能进行预测。通过这些仿真可以了解不同因素如何影响麦克风频响,如密封圈厚度、产品外壳传声孔直径、印刷电路板传声孔直径以及材料特性等。 文章还指出MEMS麦克风的频率响应由多个因素决定:低频响应主要受传感器前后通风孔尺寸及后室容积的影响;高频响应则更多地受到前室与传声孔产生的Helmholtz谐振影响。不同制造商生产的麦克风由于在传感器设计、封装尺寸和结构上的差异,其高频性能也有显著区别。 实验部分详细描述了通过调整密封圈厚度和内径、产品外壳传声孔直径以及印刷电路板传声孔直径等参数进行频响仿真结果的分析。这些研究帮助理解各参数变化对频率响应的具体影响,并为设计阶段优化麦克风性能提供了参考依据。例如,仿真实验显示增加密封圈厚度会因延长传声孔长度而导致共振频率降低,进而影响高频灵敏度;而增大密封圈内径则能提高共振频率并改善总体频响性能。 声音路径形状对频响应的影响表明,在复杂结构中准确预测Helmholtz谐振器的特性极具挑战性。因此,声学仿真在MEMS麦克风设计过程中扮演着不可或缺的角色,它有助于早期发现问题和进行有效性能预测,从而节省开发时间和成本。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MEMS
    优质
    《MEMS麦克风的音频设计》一书专注于微机电系统(MEMS)技术在现代声学设备中的应用,深入探讨了如何利用MEMS麦克风优化音频系统的性能与可靠性。 MEMS麦克风的声学设计是微型电机械系统(Microelectromechanical Systems, MEMS)领域中的一个重要分支,它涉及微小麦克风单元的设计与优化以提升其性能。由于MEMS麦克风通常应用于移动通信设备、便携式电子产品和消费类电子产品中,因此它们需要具备高性能、小尺寸、高可靠性和低功耗的特点。 在设计MEMS麦克风的声学部分时,主要目标是确保声音信号能够高效且准确地从外界传输到麦克风振膜上。这一过程中的关键因素包括产品外壳、声学密封圈、印刷电路板以及麦克风本身的组件构成的声学路径。此路径不仅需要引导声波至振膜,还需提供足够的声学隔离以防止外部噪声干扰,并直接影响MEMS麦克风的频响特性,从而影响设备音频录制质量。 Helmholtz谐振器是一种特殊的声学结构,在声音设计中常被使用,尤其是在声孔设计方面。当通过狭窄传声孔进入较大空腔时,可能会引发特定频率下的共振现象。这种共振频率由传声孔的截面积、长度及空腔体积决定。在MEMS麦克风的设计过程中,可以通过调整不同参数(如传声孔直径、密封圈厚度和内径等)来优化Helmholtz谐振器的共振频率,进而改善其频响特性。 仿真软件COMSOL是进行声学设计的重要工具之一,能够建立声学路径模型,并对各种设计参数下麦克风的频响性能进行预测。通过这些仿真可以了解不同因素如何影响麦克风频响,如密封圈厚度、产品外壳传声孔直径、印刷电路板传声孔直径以及材料特性等。 文章还指出MEMS麦克风的频率响应由多个因素决定:低频响应主要受传感器前后通风孔尺寸及后室容积的影响;高频响应则更多地受到前室与传声孔产生的Helmholtz谐振影响。不同制造商生产的麦克风由于在传感器设计、封装尺寸和结构上的差异,其高频性能也有显著区别。 实验部分详细描述了通过调整密封圈厚度和内径、产品外壳传声孔直径以及印刷电路板传声孔直径等参数进行频响仿真结果的分析。这些研究帮助理解各参数变化对频率响应的具体影响,并为设计阶段优化麦克风性能提供了参考依据。例如,仿真实验显示增加密封圈厚度会因延长传声孔长度而导致共振频率降低,进而影响高频灵敏度;而增大密封圈内径则能提高共振频率并改善总体频响性能。 声音路径形状对频响应的影响表明,在复杂结构中准确预测Helmholtz谐振器的特性极具挑战性。因此,声学仿真在MEMS麦克风设计过程中扮演着不可或缺的角色,它有助于早期发现问题和进行有效性能预测,从而节省开发时间和成本。
  • MEMS电路简介
    优质
    MEMS麦克风电路是一种将微机电系统技术应用于声学传感器的小型化音频输入解决方案,具备高灵敏度、低功耗和优良性能。 如今MEMS麦克风正在逐渐取代音频电路中的驻极体电容麦克风(ECM)。尽管这两种麦克风的功能相同,但它们与系统其余部分的连接方式有所不同。本应用笔记将介绍这些区别,并提供一个基于MEMS麦克风替换设计的具体细节。 在使用ECM时,音频电路通常通过两根信号引线进行连接:一个是输出端口,另一个是接地端口。麦克风依靠输出引脚上的直流偏置来实现其工作状态的维持。这种偏置一般由偏置电阻提供,并且麦克风的输出和前置放大器输入之间会经过交流耦合。 ECM的一个常见应用场景是在手机中作为耳机内置语音麦克风使用。在这种情况下,连接耳机与手机之间的接口通常有四个引脚:左声道音频输出、右声道音频输出等。
  • 基于电容式MEMS读出电路
    优质
    本研究聚焦于开发一种新型的电容式MEMS麦克风读出电路设计方案,旨在提升音频捕捉的质量与效率。通过优化电路结构和算法,实现了更高的灵敏度、更低的噪声以及更宽的工作温度范围,为消费电子、智能家居等领域的声学应用提供了高性能解决方案。 与传统的驻极体电容式麦克风相比,电容式MEMS麦克风具有以下优势:1)性能稳定,温度系数低,受湿度和机械振动的影响小;2)成本低廉;3)体积小巧,背极板和振膜的尺寸仅为驻极体电容式麦克风的十分之一左右;4)功耗更低。这些优点使得电容式MEMS麦克风得到了越来越广泛的应用。 然而,设计人员在使用这种麦克风时也面临一些挑战:1) 麦克风在声压作用下产生的信号非常微弱,需要读出电路具有极低的噪声水平;2) 电容式MEMS麦克风的静态电容值为皮法(pF)量级,为了实现低于20Hz的高通滤波器,输入电阻需达到吉欧姆(GΩ)级别。因此,在设计中如何有效实现高阻值电阻成为另一大挑战;3) 电路设计还需要考虑其他因素以优化性能。
  • 基于ESP32和I2SMEMS声级(SLM)
    优质
    本项目采用ESP32搭配I2S接口与MEMS麦克风,设计了一款数字声级计(SLM),用于实时监测环境噪音水平,并可通过Wi-Fi传输数据。 esp32-i2s-slm 是一个使用 ESP32 和 I2S MEMS 麦克风构建的声级计项目。
  • Android 实时获取
    优质
    本项目提供了一种在Android设备上实时采集和处理麦克风输入音频信号的方法,适用于语音识别、音乐播放等场景。 可以实现微信和 QQ 发送语音那种实时音量的捕获。
  • 采用Vesper专利技术压电MEMSVM2020
    优质
    本设计介绍了一款基于Vesper公司独特专利技术开发的高性能压电式MEMS麦克风——VM2020。该产品集成了先进的声学传感元件,提供卓越的声音捕捉性能和耐用性,适用于智能手机、智能家居等领域的高端音频解决方案。 首款面向消费类产品的超高声学过载点(AOP)MEMS麦克风能够应对极其嘈杂的环境。
  • 收集PCPCM数据
    优质
    本项目致力于开发一套高效的数据采集系统,专门用于从个人计算机的麦克风中获取高质量的PCM格式音频信号,旨在为声音识别和处理应用提供精准的数据支持。 使用Windows API采集PC音频并保存成文件是一种较为简便的方法,相比之下DirectX的实现过程比较繁琐。如果只需要简单的应用功能,直接利用Windows API会更加轻便高效,并且结合网上的相关教程稍作调整即可正确运行并完成音频采集任务。对于采集到的PCM数据,建议使用Audacity软件导入裸数据来验证其准确性。
  • 电路
    优质
    本项目专注于设计高效能麦克风电路,涵盖音频拾取、放大与降噪技术,旨在提升声音捕捉质量及应用范围。 麦克风电路设计适用于MTK平台。使用人员为硬件与声学工程师。 内容概要:本段落介绍了解决TDD噪声问题的原理及注意事项,并针对特定情况提供了建议。例如,当使用MT6253/MT6225时,在以下情况下应考虑采用差分电路: - 无法严格遵循布局规范; - 难以控制麦克风电路的设计源头; - 麦克风位置过于接近天线; - 当走4板线路时。 以上建议有助于优化设计,减少噪声干扰。
  • Unity中录制 Record Microphone Audio
    优质
    本教程详细介绍如何在Unity引擎中使用脚本来录制和保存来自计算机麦克风的音频。适合中级开发者学习实践。 这是一个使用C#编写的Unity脚本,可以录制麦克风的语音输入并保存为WAV格式文件。使用方法如下:首先确保已连接麦克风且设置为默认输入设备;然后将此脚本附加到任意游戏对象上,默认配置即可满足需求;运行时通过按下G键开始录音、按H键播放录音,以及按J键来保存音频文件。