本文探讨了最小二乘法与最大似然法在参数估计中的应用及其优缺点,通过对比分析为不同场景下的统计建模提供指导。
在系统建模过程中,参数辨识是一个关键步骤,它通过分析输入与输出的数据来确定一个系统的模型,并使之尽可能地接近实际的被测系统。通常情况下,在进行这种建模工作时会遵循一系列的标准流程,包括但不限于对系统的描述、选择合适的模型结构、估计参数和状态变量、验证模型的有效性以及重复实验或计算等环节。
本段落重点介绍了两种常用的参数辨识技术:最小二乘法与最大似然法。其中,最小二乘法则是一种通过减少预测值与实际观测数据之间的误差平方来估算系统参数的方法,并且可以采用递推形式(即每一步都基于上一次的估计结果和新的测量信息更新当前的参数估值),从而实现对动态系统的实时监控及调整。
相比之下,最大似然法则是另一种利用概率统计原理进行参数估测的技术。它首先构建一个反映观测数据与潜在未知变量之间关系的概率模型——即所谓的“似然函数”,然后通过寻找使该函数值最大的一组参数作为最终的估计结果。同样地,在递推形式下,这种方法也可以根据最新的观察信息不断优化其先前的预测。
此外,本段落还简要介绍了如何利用MATLAB这一编程工具来实现上述方法的实际应用。通过对这两种技术的比较分析可以发现:虽然两者都能有效地识别出系统参数,但是从计算复杂度的角度来看,递推最大似然法往往需要更高的运算资源投入。
关键概念包括:
- 参数辨识:用于通过输入输出数据确定模型的过程。
- 最小二乘法:一种减少误差平方的技术。
- 递推最小二乘法:实时更新参数估计的方法。
- 最大似然法:基于概率分布来估算未知参数的策略。
- 递推最大似然法:不断优化其预测结果以适应新数据的过程。