Advertisement

图像分类属于简单图像处理技术。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
一个简洁的图片分类程序,利用了Python编程语言(结合了NumPy和OpenCV库),并附带了完整的源代码以及一组用于训练和测试的图片资源。该程序在分类准确率方面表现出了一定的水平,达到了大约89%。此项目主要为学习目的而设计和提供。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 数字 数字
    优质
    《数字图像处理技术》是一门研究如何使用计算机对图像信息进行处理的技术学科,涵盖了图像增强、分析和压缩等关键领域。 数字图像处理是指对数字形式的图像进行各种操作和技术应用的过程,包括但不限于图像增强、滤波、压缩、特征提取以及模式识别等方面的技术。这些技术广泛应用于医学影像分析、遥感与地理信息系统、安全监控等领域,极大地促进了相关行业的进步和发展。
  • 优质
    图像处理技术是通过计算机对图像信息进行分析、变换和优化的技术,广泛应用于医疗诊断、安全监控、工业检测等领域。 这是编译好的CLAHE,使用MFC制作的界面,核心代码是C语言写的。
  • 识别和介.pptx
    优质
    本PPT介绍图像识别与图像处理的基本概念、关键技术及其应用领域,包括但不限于特征提取、模式识别及机器学习算法等。 从目的上可以将图像处理分为两类:一类是图像识别技术;另一类是图像处理技术。针对后者而言,它涵盖了旋转、调整亮度、对比度、饱和度以及RGB调节等属性方面的处理手段,同时也包括了添加文字、增强或弱化图像质量、增加水印和特效等功能。为了实现更精细的处理效果,一些软件还运用了图层功能。此外,在缺陷检测中,识别图像中的噪声也是重要的环节之一。
  • 数字实验四:
    优质
    本实验通过数字图像处理技术进行图像分割研究,涵盖阈值分割、边缘检测及区域划分方法,旨在提升学生对图像细节的理解与分析能力。 实验目的: 1. 掌握图像分割中的几种主要边缘检测方法(包括Roberts算子、Sobel算子、Prewitt算子以及Laplacian算子)。 2. 了解并掌握图像的阈值分割算法。 3. 熟悉和应用图像区域分割的技术。 实验要求: 1. 使用Roberts算子、Sobel算子或Prewitt算子中的任意一种,允许选择不同模板进行边缘检测。具体操作包括对清晰图片及带噪点干扰图实施处理,并将得到的边缘图与原始图像叠加显示;同时计算并展示原图和叠加后的信息熵值。 2. 实现Laplacian算子的功能应用。 3. 开发灰度图像以及彩色图像的迭代阈值分割算法程序。 4. 利用区域生长技术对一幅特定图片进行有效的图像分割处理。
  • 自动曝光的——
    优质
    本研究聚焦于开发先进的自动曝光算法,通过智能地将图像分割成多个区域,并针对每个区域调整曝光参数,以优化整体视觉效果。该技术在低光和高动态范围场景中表现出色,显著提升了照片的质量与细节表现力。 图像分区自动曝光技术能够动态调整曝光时间等参数。
  • OpenCV与SVM的:利用机器学习进行
    优质
    本项目运用OpenCV库和SVM算法,结合机器学习方法,实现高效的图像处理与分类任务,推动视觉识别领域的应用发展。 本段落提出的算法旨在实现印度古典舞中的姿势识别任务。研究涵盖了三种不同的舞蹈形式:巴拉特纳坦、卡萨克舞以及奥迪西舞,并针对这15种特定的舞蹈姿势进行了分类分析。初始数据库将包含100张图像,这些数据会被进一步划分为训练集和测试集。 在特征提取技术的选择上,本段落采用了Hu矩方法来描述图像中的形状上下文信息,这是因为该方法具备对缩放、平移及旋转变化的良好不变性特性。为了准确地计算出Hu矩值,在预处理阶段需要将原始图片的前景与背景分离,并转换为二进制形式。 考虑到这是一个多类分类问题,本段落采用了支持向量机(SVM)算法进行模型训练和预测任务。“一对一”和“一对多”的策略被用来构建不同的SVM分类器。此外,还对使用线性核函数和支持向量机的径向基函数(RBF)内核的效果进行了对比分析。 在执行程序代码时,首先需要运行binary.py文件来将所有色调照片转换为二进制图像格式。
  • 灰度
    优质
    灰度图像处理技术是指对单通道灰阶值进行增强、滤波、边缘检测等操作的技术,广泛应用于计算机视觉和图像识别等领域。 使用OpenCV库将彩色图像转换为灰度图像,并进行显示和存储。
  • 多种
    优质
    本课程涵盖了各种先进的图像处理技术和方法,包括但不限于图像增强、复原、分割和压缩等,旨在帮助学生掌握图像分析的核心技能。 一些简单的图像处理算法包括边缘检测滤波、PSNR等。
  • SAR(RMA)
    优质
    RMA(雷达微波遥感)技术是利用合成孔径雷达(SAR)获取地面信息的一种方法。它能够穿透云层和黑暗工作,在自然灾害监测、环境变化分析等领域有着广泛应用。 这段文字描述的是麻省理工学院(MIT)公开课中的一个源代码项目,项目的主题是“简易咖啡馆天线雷达”,这是该项目原始数据处理部分的内容。
  • 去雾
    优质
    图像去雾处理技术是一种旨在改善被雾霾影响的照片或视频质量的技术。通过复杂的算法分离出场景的清晰细节和霾的影响,增强图像的整体视觉效果与清晰度。 在图像处理领域,去雾是一项关键技术,主要用于改善因大气散射导致的图像模糊问题,并提高图像的视觉质量和细节清晰度。当场景被雾气笼罩时,对比度会降低且色彩暗淡,严重影响了对重要目标的辨识能力。因此,去雾技术应运而生,旨在恢复图像的真实颜色和结构并增强其视觉效果。 该技术主要基于光学原理及大气散射模型进行设计。大气散射是指光线在穿过含有悬浮粒子(如雾、烟)介质时发生偏离的现象,导致远处物体的光线强度减弱形成模糊视效。传统的去雾方法包括暗通道先验理论和物理建模两种途径。 1. **基于暗通道先验**:这一技术由浙江大学汤晓鸥教授团队提出,并已成为最常用的方法之一。其核心假设是大部分图像局部区域至少有一个颜色通道的像素值非常低,这些位置对应未直接照射的部分。通过识别并利用这些“暗”点,可以估计大气光和透射率进而反推无雾状态下的原图。 2. **基于物理模型**:这种方法通常涉及更复杂的数学建模来描述光线在大气中的传播过程,比如HDR成像技术或光照距离模型等方法。通过建立晴天与雾天图像间的关系求解出去雾后的结果。 3. **深度学习方法**:随着卷积神经网络(CNN)的应用越来越广泛,在大量带标签数据的支持下训练出来的模型能够高效准确地执行去雾任务,如DehazingNet和AOD-Net等。这些模型能捕获更复杂的图像特征,从而实现更好的效果。 在实际应用中,该技术被广泛应用到监控视频处理、自动驾驶系统、无人机航拍及遥感图像分析等领域。例如,在自动驾驶场景下去除前方道路的雾气可以提高传感器识别精度并保障行车安全;而在无人机拍摄过程中,则有助于提升照片质量使其更加鲜明生动。 对于开发者而言,理解这些去雾算法的工作原理,并能够有效地实现它们是十分重要的。同时,了解不同方法各自的优缺点也有助于根据实际需求选择最合适的处理技术以达到最佳效果。