Advertisement

基于STM32F4的16通道ADC采集程序示例

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本示例展示了如何在STM32F4微控制器上编写代码以实现16通道模拟到数字转换器(ADC)的数据采集功能,适用于嵌入式系统开发与学习。 STM32F4 的16通道ADC采集例程,注释清晰: PCLK2 = HCLK / 2 选择的是2分频 ADCCLK = PCLK2 /8 = HCLK / 8 = 168 MHz / 8 = 21MHz ADC采样频率:Sampling Time + Conversion Time = 480 cycles + 12 cycles = 492 cycles Conversion Time = 21 MHz / 492 cycles ≈ 42.6 ksps. /* ADC Common 配置 ----------------------------------------------------------*/ ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2; ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; ADC_CommonInit(&ADC_CommonInitStructure);

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32F416ADC
    优质
    本示例展示了如何在STM32F4微控制器上编写代码以实现16通道模拟到数字转换器(ADC)的数据采集功能,适用于嵌入式系统开发与学习。 STM32F4 的16通道ADC采集例程,注释清晰: PCLK2 = HCLK / 2 选择的是2分频 ADCCLK = PCLK2 /8 = HCLK / 8 = 168 MHz / 8 = 21MHz ADC采样频率:Sampling Time + Conversion Time = 480 cycles + 12 cycles = 492 cycles Conversion Time = 21 MHz / 492 cycles ≈ 42.6 ksps. /* ADC Common 配置 ----------------------------------------------------------*/ ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2; ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; ADC_CommonInit(&ADC_CommonInitStructure);
  • STM32F4ADC
    优质
    本项目聚焦于使用STM32F4微控制器实现双通道模拟数字转换器(ADC)的数据采集技术,适用于精密测量与控制系统。 使用ALIENTEK STM32F407开发板实现双路ADC采集。
  • STM32 ADC DMA多
    优质
    本示例程序展示如何使用STM32微控制器通过DMA实现ADC多通道数据采集,提高数据采集效率与系统响应速度。 STM32 ADC DMA多通道采样例程适用于STM32F103单片机,并可在Keil环境中进行开发。此项目展示了如何使用DMA功能实现高效的ADC多通道数据采集,适合于需要同时监测多个传感器信号的应用场景。
  • FPGA16进制ADC与串口显
    优质
    本项目设计了一款基于FPGA技术的八通道十六进制ADC数据采集系统,并实现了通过串行接口进行数据显示的功能。该方案能够高效处理多路模拟信号,适用于需要实时监测和分析的数据密集型应用场景。 通过Verilog语法实现了对8通道16位AD数据的持续采集,并不断发送到串口助手进行显示。
  • STM32F103C8T6ADC
    优质
    本项目展示了如何使用STM32F103C8T6微控制器进行双通道模拟信号采集,并通过串口输出采样数据,适用于嵌入式系统开发学习与实践。 STM32F103C8T6是一款由意法半导体(STMicroelectronics)生产的基于ARM Cortex-M3内核的微控制器,在各种嵌入式系统设计中得到广泛应用。这款芯片配备了丰富的外设接口,其中包括模拟数字转换器(ADC),用于将连续变化的模拟信号转化为离散的数字值以供后续处理。 理解ADC的工作原理非常重要。它在模拟世界和数字世界之间架起桥梁,通过一系列步骤把连续的模拟信号转变成数字化的数据形式。STM32F103C8T6内置三个独立工作的12位ADC模块,每个都可以单独配置或组合使用以适应不同的应用需求。对于双路ADC采样而言,主要关注的是ADC1和ADC2两个单元,并且它们可以同时工作来实现对不同输入通道的快速采集。 要进行STM32F103C8T6上的双路ADC采样操作,需要遵循以下步骤: 首先**初始化ADC**: 在此阶段中必须设置好采样时间、转换精度以及数据排列方式等参数。使用如STM3CubeMX这样的工具可以简化这些配置工作;确保启用两个目标ADC,并且选择适当的序列。 其次要**选定输入通道**: 这款微控制器具有18个可选的ADC输入端口,分布在不同的GPIO引脚上。根据实际需求挑选出用于双路采样的两个通道(例如CH0和CH1),并将它们连接到相应的模拟信号源。 接下来是设置同步模式:为了在同一个时间点采集两组数据,需要将ADC1与ADC2配置为同步运行状态;在此设定下启动任一单元的转换操作会自动触发另一端开始采样过程。 之后要**配置中断或DMA**: 通过这种方式可以实现对转换结果的实时处理。当使用中断时,在每次完成一次转换后都会生成一个服务请求,而采用DMA则能够直接将数据传输至内存中从而减轻CPU的工作负担;根据具体项目需求选择适合的方法。 随后是启动转换:在完成了所有必要的配置之后,可以通过软件命令或外部事件触发ADC的运行。对于双路采样应用来说,通常使用软件方式来激活两个单元(即调用HAL_ADC_Start(&hadc1)和HAL_ADC_Start(&hadc2))以开始采集工作。 紧接着是**读取并处理结果**: 当转换过程结束后,可以利用HAL_ADC_GetValue()函数获取ADC的输出值;若采用中断机制,则在相应的服务例程中进行数据处理,而如果使用DMA方式则需在回调函数内完成该操作。 最后,在不必要继续采样时应关闭ADC以节约能源。这可以通过调用HAL_ADC_Stop(&hadc1)和HAL_ADC_Stop(&hadc2)来实现停止两个单元的转换功能。 实际应用中还可能需要考虑其他因素,例如噪声过滤、调整采集速率或进行校准等操作;同时应当遵守良好的编程规范保证代码的质量与可维护性。通过以上步骤可以有效地在STM32F103C8T6上实施双路ADC采样程序,并高效地处理来自两个模拟输入源的数据信号。
  • STM32多ADC
    优质
    本项目提供了一套针对STM32微控制器的多通道模拟数字转换(ADC)采集程序。该程序能够高效地从多个外部输入源连续读取数据,并支持配置不同的采样率和分辨率,为需要进行高精度信号监测的应用提供了可靠解决方案。 STM32多路ADC采集程序使用了DMA方式。该测试程序使用了三路ADC,分别是PA4、PA6和PA7。
  • DMAADC
    优质
    本项目研究并实现了一种基于直接内存访问(DMA)技术的多通道模拟数字转换器(ADC)数据采集系统,旨在提高数据采集效率和精度。 在嵌入式系统开发中,ADC(Analog-to-Digital Converter)是一种关键的硬件组件,它能够将连续变化的模拟信号转换为离散的数字信号,以便微处理器进行处理。多通道ADC采集允许系统同时对多个模拟输入源采样,在数据采集、信号处理和控制系统等应用中尤为关键。本主题深入探讨基于DMA(Direct Memory Access)技术的ADC多通道采集方法,特别适用于STM32系列微控制器。 理解DMA的概念至关重要。DMA是一种硬件机制,使外设可以直接与系统内存交换数据而不通过CPU。这提高了数据传输速率,并减少了CPU负担,在大量数据传输时效果尤为明显。在ADC采样场景中,DMA可以自动将转换后的数字值从ADC缓存区复制到RAM,让CPU专注于其他任务。 STM32微控制器集成了高性能的ADC模块,支持多通道采样。配置多通道ADC采集需要首先在STM32的ADC初始化设置中指定所需的通道,并连接不同的模拟输入源如传感器信号或电源电压。然后,设定转换序列以决定哪些通道按什么顺序进行转换。 接下来启用DMA与ADC的链接,在STM32的DMA控制器中选择一个合适的DMA通道并将其与ADC的转换完成中断请求相连。这样当ADC完成一次转换时会触发DMA传输,自动读取ADC结果并将数据写入指定内存位置。 为了实现多通道采集需要设置ADC扫描模式以连续转换多个通道。在STM32的ADC提供了单次和连续两种工作模式,在多通道采集中通常选择连续模式确保所有指定通道按预设顺序持续采样。 编程过程中需关注以下关键步骤: 1. 配置ADC:设定其工作方式(如单通道或多通道)、分辨率、采样时间及转换序列等。 2. 配置DMA:选择合适的传输方向,大小和地址等相关设置。 3. 连接ADC与DMA:确保ADC完成转换后能触发DMA数据传输并正确配置中断请求使能。 4. 设置中断处理程序以在半传输或完全传输完成后执行特定操作如更新显示或存储采集的数据。 实际应用中还需考虑错误处理、电源管理及同步问题等。初学者可能会遇到通道配置不当,DMA设置有误导致丢失数据等问题,这些问题需通过阅读官方文档并积累实践经验来解决。 基于DMA的多通道ADC采样技术是STM32开发中的重要技能之一,它能提高采集效率降低CPU负载适用于各种实时性要求高的应用场景。掌握这种技术和相应的编程技巧有助于开发者构建高效可靠的嵌入式系统。
  • MSP430微控制器16ADC(AD7705)
    优质
    本项目开发了一种基于MSP430微控制器与双通道16位ADC(AD7705)的高效数据采集系统,适用于高精度测量应用。 AD7705是Analog公司生产的一款高精度16位双通道ADC芯片,能够同时对两个通道进行采样。本程序基于MSP430f169单片机实现了一路通道的采样功能,对应的函数为get_data_V()。在采集到模拟信号并转换成数字量后,通过串口中断将这些数字量发送给串口调试助手,并利用该工具来观察和验证数据的有效性。通信参数设置为:波特率为9600、无校验位(N:不进行奇偶校验)、8个数据位及1个停止位。
  • GD32F40716ADC样与DMA技术
    优质
    本项目介绍了一种采用GD32F407微控制器实现的16通道模拟数字转换(ADC)采样系统,并结合直接存储器访问(DMA)技术,有效提升数据传输效率。 项目基于GD32F407ZGT6立创梁山派开发板V1.0.2进行设计,使用KEIL MDK-ARM PLUS V5.35作为软件开发环境,并采用GD32F4xx标准固件库V3.0.0来实现一个包含16路ADC采样和DMA功能的测试程序。
  • STM32ADC数据
    优质
    本项目采用STM32微控制器实现双通道模拟信号的数据采集与处理,适用于多种传感器输入,具有高精度和实时性。 本项目基于STM32F103RC单片机实现两路ADC采集,并能在显示屏上显示数据,在开发板上验证过是完全正确的。