Advertisement

基于分割的深度学习方法用于表面缺陷检测以及其实现。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
1. 该代码库采用PyTorch框架构建,并提供GPU版本(同时支持CPU运行,但可能因内存限制而导致超出容量);2. 资源中包含了用于训练的KolektorSDD电子转换器表面裂痕图像数据集,以及与该项目相关的论文原文和代码实现;(由于训练好的模型体积较大,超过了平台的资源大小限制,无法直接上传。如果您有需求,请留言告知,我将尽快在其他平台(如网盘)上传链接并在此处分享。)3. 如果您希望更深入地了解本资源的详细信息,请参阅我撰写的博文。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Python中使TensorFlow
    优质
    本研究提出了一种利用Python与TensorFlow框架结合的方法,实施基于分割技术的深度学习算法,专门用于自动化检测物体表面缺陷。该方法通过高效的图像处理和机器学习模型训练,能够准确识别并分类各种类型的制造瑕疵,从而提高产品质量控制效率,并降低人工检查成本。 基于分割的深度学习表面缺陷检测方法(CVPR 2019)的一个TensorFlow实现,旨在克服DeepLabV3和Unet在缺陷检测方面的不足。
  • DL
    优质
    本研究探讨了基于深度学习分割技术在表面缺陷检测领域的应用与实施,旨在提升工业产品质量控制的精确性和效率。 1. 使用PyTorch实现的代码,支持GPU运行(也可在CPU上运行,但可能会出现内存不足的问题);2. 包括KolektorSDD电子转换器表面裂痕的数据集图片、论文原文及训练好的模型文件(由于模型大小超过1G,无法上传至资源平台。若有需要请留言告知,我将尽快找到并分享到网盘)。3. 关于此资源的具体介绍,请参考我的相关文章。
  • 热轧带钢自动化.zip
    优质
    本研究提出了一种基于深度学习技术的热轧带钢表面缺陷自动化检测方案,旨在提高检测精度与效率。该方法通过分析大量带钢表面图像数据,自动识别并分类各种常见缺陷类型。 深度学习在热轧带钢表面缺陷自动检测技术中的应用已成为现代工业生产不可或缺的一部分,它显著提升了产品质量控制的效率与准确性。作为众多制造业的基础材料,热轧带钢的质量直接影响到最终产品的性能和使用寿命。传统的手动检查方法耗时且容易出错,而基于深度学习的技术通过自动化手段解决了这些问题。 深度学习是机器学习的一个分支领域,模仿人脑神经网络的工作方式,并利用大量数据训练模型以进行复杂的模式识别任务。在热轧带钢表面缺陷检测中,卷积神经网络(CNN)被广泛使用来处理图像数据。由于其强大的特征提取能力,CNN能够从图像中辨识出细微的纹理、形状和颜色变化等关键信息。 为了构建有效的深度学习模型,需要准备大量包含不同类型的表面缺陷以及无缺陷样本的热轧带钢图像作为训练集。这些可能包括裂纹、氧化皮、夹杂及划痕等多种类型。数据预处理阶段涉及对图像进行增强操作(如旋转、缩放和裁剪),以提高模型泛化能力,并且需要标记每个图像中的缺陷位置与类别。 接下来是构建深度学习架构,常用的选择有AlexNet、VGG、ResNet以及Inception等系列,它们在图像识别任务中表现出色。这些网络通常由卷积层、池化层和全连接层组成,并利用激活函数进行非线性变换。通过反向传播算法及优化器(如Adam或SGD)对模型参数进行调整直至达到最优性能。 训练完成后,该检测系统能够实时处理新热轧带钢图像并输出缺陷的置信度与位置信息。当发现超过预设阈值的问题时,将自动触发警报,并可能启动进一步检查或修复程序。 除了CNN之外,YOLO(You Only Look Once)和SSD(Single Shot MultiBox Detector)等目标检测模型也可以用于定位及分类热轧带钢表面的多种缺陷区域。这些算法能够快速准确地识别出多个潜在问题区域的位置与属性信息。 在实际应用过程中,还需考虑系统的实时性和稳定性等因素。这可能涉及使用GPU加速计算、设计并行处理流程以及流式数据处理架构等策略来优化整体性能表现。此外,定期更新和维护模型也是确保其长期有效性的关键步骤之一。 总而言之,基于深度学习的热轧带钢表面缺陷自动检测技术利用先进的机器学习算法分析图像信息,实现了高效且精确的质量监控目标,并大幅降低了人工检查成本、提高了生产效率与产品质量水平。随着相关领域的持续进步与发展,未来有望看到更多创新应用出现并进一步推动工业生产的智能化进程。
  • Halcon异常值
    优质
    本研究采用Halcon软件平台,结合深度学习技术,开发了一种高效的异常值缺陷检测方法,旨在提升工业生产中的产品质量与检测效率。 在IT行业中,深度学习是一种基于人工神经网络的机器学习技术,它模仿人脑的工作方式,并通过大量数据训练来实现复杂的模式识别与决策过程。Halcon是一款强大的机器视觉软件,结合了深度学习技术以提供高效且精确的图像处理解决方案。特别是在异常值缺陷检测领域中,Halcon主要用于工业产品质量控制方面,例如表面丝印单块检测。 表面丝印是产品制造过程中不可或缺的一部分,通常用于标识或装饰目的。然而,在生产环节中可能会出现诸如不完整、模糊和缺失等质量问题,这些问题会直接影响到产品的质量和外观表现。通过深度学习算法的应用,Halcon能够识别并处理这些异常情况以确保产品质量达到严格的标准。 构建一个有效的深度学习模型需要基于大量的训练样本集,包括正常与异常的丝印图像数据。通过对大量图像的学习过程,该模型可以掌握正常的表面特征,并且准确地区分出不符合标准的情况。在实际操作中,Halcon会执行一系列预处理步骤如灰度化和直方图均衡化等来提升图像质量并减少背景噪声干扰。 接下来,在应用预先训练好的深度学习算法时,系统会对每个输入的丝印图片进行分析以查找潜在的问题区域,并通过设定阈值判断是否存在异常状况。通常情况下,Halcon可能采用卷积神经网络(CNN)这类架构来进行分类任务,因为其在处理图像数据方面具有显著优势。 此外,Halcon还提供了一系列完整的工具集支持整个深度学习流程的实施与优化工作,涵盖训练数据管理、模型训练及评估等多个环节。这使得用户可以轻松地将这项技术集成到现有的自动化生产线中,并能够实时反馈检测结果以便及时剔除不合格产品,从而提升生产效率和产品质量。 综上所述,利用Halcon的深度学习功能进行异常值缺陷检测是确保制造流程稳定性和可靠性的关键手段之一,在现代制造业尤其是那些需要高精度与一致性检查的应用场景下具有广阔的发展前景。
  • 技术车辆零部件.pdf
    优质
    本文探讨了一种创新的车辆零部件缺陷检测方法,利用深度学习技术提升检测精度与效率。该研究为汽车行业质量控制提供了新的解决方案。 在介绍基于深度学习的车辆零件缺陷检测方法时,首先需要了解图像处理与分析领域中的应用背景和技术进展。深度学习是一种通过多层神经网络来自动从数据中提取表征信息的技术,而卷积神经网络(Convolutional Neural Network, CNN)则是其中最为有效的模型之一。CNN能够自动地从图片中抽取特征,并进行分类。 该方法所涉及的主要技术包括VGGNet和InceptionV3两种深度卷积神经网络结构,在图像识别领域表现突出。VGGNet由牛津大学视觉几何小组提出,其特点是使用了较小的卷积核(如3×3)与池化核(2×2),这使得模型在参数量减少的同时保持较高的性能。通常情况下,一个典型的VGG16结构包含五段卷积层和三段全连接层,在每一段中都包含了多个连续的卷积操作,并且随着层数增加,使用的滤波器数量也逐渐增大。 InceptionV3则是由Google提出的一种新型CNN架构,它采用了“inception模块”,该模块可以灵活地适应不同大小与位置的重点区域问题。通过在同一个结构内使用多种尺寸(如1×1, 3×3, 5×5)的卷积核和池化操作,InceptionV3能够在捕捉更多空间信息的同时保持网络效率。 文中提出了一种名为SF-VGG的新模型用于车辆零件缺陷检测,该模型基于简化改进后的VGGNet,并融合了部分来自InceptionV3的设计理念。通过引入额外的特征融合层来增强模型的表现力。实验表明,在自定义数据集及模糊图像测试中,SF-VGG均表现出良好的准确率和性能。 此外,文中还提到了几种其他技术手段应用于零件缺陷检测的例子:包括基于BP神经网络构建的机器视觉在线自动检测系统、采用SURF特征算法进行动车车辆底部缺陷识别的方法以及利用激光与CCD测量技术来检查球体表面瑕疵的技术。这些研究展示了多种不同方法在该领域内的应用潜力。 随着深度学习技术在图像处理及目标检测等领域的快速发展,其在未来车辆零件缺陷检测中的应用前景非常广阔。通过持续优化模型结构并结合实际生产需求,深度学习有望进一步提升此类任务的效率与精度。
  • 小样本语义网络
    优质
    本研究提出了一种针对小样本数据集的高效表面缺陷检测技术,采用先进的语义分割网络模型,有效提升工业品质检精度与效率。 传统工业产品表面缺陷检测主要依赖人工肉眼识别,这显著降低了生产效率,并在一定程度上限制了社会生产力的发展。为了提高检测效果并减少人工成本,本段落提出了一种基于语义分割网络UNet的小样本表面缺陷检测方法,在原有的UNet基础上进行了两方面的改进:一是加入了BN层;二是将残差网络与UNet结合在一起。此外,在下采样过程中引入了不同数量的残差块(3、5和7个),并对这些配置的效果进行了实验验证。 结果显示,通过在UNet中加入BN层可以提高分割检测效果,而进一步添加残差块则能够显著提升缺陷识别性能。
  • 软件模型
    优质
    本研究探讨了利用深度学习技术在软件开发过程中进行缺陷预测的应用,通过构建和评估不同模型,旨在提高软件质量与开发效率。 为了提高软件的可靠性,软件缺陷预测已成为软件工程领域的重要研究方向之一。传统的软件缺陷预测方法主要依赖于静态代码度量,并利用机器学习分类器来评估代码中潜在的问题概率。然而,这种方法未能充分考虑源代码中的语义特征。 针对这一问题,本段落提出了一种基于深度卷积神经网络(CNN)的软件缺陷预测模型。首先,从抽象语法树中选择合适的节点提取表征向量,并将这些向量映射为整数序列以适应输入到卷积神经网络的要求。其次,基于GoogLeNet架构设计了用于挖掘代码语义和结构特征的深度卷积神经网络。 此外,该模型还引入了随机过采样技术来应对数据不平衡问题,并使用丢弃法(Dropout)防止模型过度拟合训练集。最后,在Promise平台的历史工程数据上测试了这一新方法,通过AUC与F1-measure指标与其他三种预测算法进行了对比实验。结果显示,本段落提出的基于深度卷积神经网络的软件缺陷预测模型在性能上有显著提升。
  • Python-Tensorflow驱动.rar
    优质
    本资源为基于Python和TensorFlow开发的表面缺陷自动检测系统,采用深度学习技术进行图像分割以识别物体表面的各种瑕疵。 基于TensorFlow的一个案例实现,在实际生产环境中用于瑕疵检测。该系统适用于布匹、木材、金属、塑料和薄膜等多种产品表面的瑕疵及斑点检测,并取得了较好的效果。