Advertisement

(分享)PPM编码器设计(含硬件、源程序及HEX文件)-电路方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供了一套详细的PPM编码器设计方案,包含硬件原理图、软件源代码以及可直接用于嵌入式设备的HEX文件,适用于电子爱好者和工程师进行学习与开发。 PPM编码器的作用是接收机输出标准舵机信号(从1个通道到8个通道不等),而MK需要的是一个混合的PPM信号,这个信号周期大约为20ms,并包含8个舵机信号的信息(并非简单地叠加)。要得到这种混合PPM信号有多种方法: a. 修改接收机:引出进入移位寄存器前的混合PPM信号。这种方法适合于PPM接收机以及一部分PCM和2.4G接收机,成本低且只需修改接收机即可获取所需信号。但需要一定的DIY能力和焊接技能,并非所有型号(如futaba R617FS)都能实现。 b. 通过移位寄存器搭建电路:这种方法不需要改装接收机,适用于不同类型的接收设备。不过它要求制作人具备数字电子技术的灵活运用能力,且无法提供一个兼容所有类型接收机的通用方案,因为各型号间存在时序和脉冲宽度差异等问题。 c. 使用单片机及中断来实现:这种方式无需修改任何硬件设施,并能支持各种类型的接收设备。优点是系统可升级性强、外部电路简单;缺点在于成本相对较高一些。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PPMHEX)-
    优质
    本资源提供了一套详细的PPM编码器设计方案,包含硬件原理图、软件源代码以及可直接用于嵌入式设备的HEX文件,适用于电子爱好者和工程师进行学习与开发。 PPM编码器的作用是接收机输出标准舵机信号(从1个通道到8个通道不等),而MK需要的是一个混合的PPM信号,这个信号周期大约为20ms,并包含8个舵机信号的信息(并非简单地叠加)。要得到这种混合PPM信号有多种方法: a. 修改接收机:引出进入移位寄存器前的混合PPM信号。这种方法适合于PPM接收机以及一部分PCM和2.4G接收机,成本低且只需修改接收机即可获取所需信号。但需要一定的DIY能力和焊接技能,并非所有型号(如futaba R617FS)都能实现。 b. 通过移位寄存器搭建电路:这种方法不需要改装接收机,适用于不同类型的接收设备。不过它要求制作人具备数字电子技术的灵活运用能力,且无法提供一个兼容所有类型接收机的通用方案,因为各型号间存在时序和脉冲宽度差异等问题。 c. 使用单片机及中断来实现:这种方式无需修改任何硬件设施,并能支持各种类型的接收设备。优点是系统可升级性强、外部电路简单;缺点在于成本相对较高一些。
  • )舞蹈机人全套、软、论结构图纸等)-
    优质
    本资料详尽介绍了舞蹈机器人的整体设计方案,涵盖硬件配置、软件编程、学术论文以及结构图纸等内容,特别突出电路设计细节。适合机器人爱好者和技术研究人员参考学习。 前言:安华高科技(简称AVAGO)早在2012年宣布开发出用于汽车应用的隔离光电耦合器技术。这项技术已被广泛应用于电动汽车和动力车中,提供安全隔离功能,例如车载电池充电系统和动力传动系统的变频器等。 接下来介绍的是基于TLP521-4光耦隔离器及电机驱动设计的一个完整舞蹈机器人项目。该机器人的主要特点如下: **实现的功能:** - **语音控制**:通过集成的语音识别技术,可以使用语音指令对小机器人进行操控。 - **移动功能**:能够前进、后退以及左右转弯,并且手臂具备全自由度摆动的能力。 - **体态动作**: 能够完成弯腰和转身等复杂姿态调整。 - **头部转动**:机器人的头部也可以灵活地转向不同方向,增强互动性与表现力。 - **音乐舞蹈程序**:机器人内置有完整的舞蹈程序,在播放音乐时能够随着节奏翩翩起舞。 该设计项目包括了系统的总体架构图以及实际制作出来的机器人实物照片。此款舞蹈机器人由张建高个人设计完成,仅供大家参考学习使用。
  • 今越子数字存储示波原理图HEX)-
    优质
    本项目提供一套完整的数字存储示波器设计方案,包含详细原理图和可直接使用的程序HEX文件。适合工程师和技术爱好者进行学习与开发。 ### 1. 工作原理 图1展示了该示波器的结构框图。输入信号通过耦合电路后进入由衰减器、放大器和选择开关组成的模拟通道,经过处理后再送入A/D转换器转变为数字信号,并最终经处理器转化为适当的波形在LCD屏幕上显示出来。模拟通道的主要作用是调节信号强度,以适应屏幕的显示范围。 ### 2. 操作说明 该示波器的操作相对简单,与专业设备相似。使用时只需接通电源即可开始工作。通过按键调整参数时,首先选择需要修改的具体参数,此时屏幕上会亮起相应的指示标记;然后利用[+]和[-]键进行调节。下面详细解释各开关及按钮的功能。 **耦合选择开关:** 用于设定信号的输入方式(交流或直流)。当被测信号包含交、直流成分时,若仅需观察其中的交流部分,可以选择“交流”模式通过电容器隔除掉直流分量,以便更清晰地显示波动变化情况。 **衰减与倍率选择开关:** 这两个功能通常会配合使用以调整输入到A/D转换器中的信号幅度。如果信号过大可能会超出屏幕范围,过小则难以准确观察细节,因此需根据实际情况调节合适的数值。其中“衰减”设置可选1或1/10,“倍率”选项为1、1/2和1/5,分别对应不同的放大比例。结合两者即可确定整个模拟通道的总增益水平。 **SEC/DIV(时基):** 决定屏幕上每个时间单位所代表的实际长度。例如设置为5ms,则意味着一格表示时间为5毫秒;若观察频率为50Hz的交流信号,其一个周期会在显示屏上显示4格即20ms左右。 **V.POS(垂直位置):** 用于调节波形在屏幕上的上下移动程度,左侧的小三角形标志代表零电平点的位置。 **H.POS(水平位置):** 控制波形沿水平方向的偏移量。采集到的数据片段可以通过此功能查看不同区域的内容,在下方有窗口指示器帮助定位当前视图范围内的具体部分。 **MODE(触发模式):** 选择示波器捕捉信号的方式,包括自动、常规和单次三种类型,详细说明请参阅相关资料。 **SLOPE(边沿触发):** 定义产生触发的边界条件是上升还是下降沿。 **LEVEL(触发电平):** 调整触发电压值大小,在右侧的小三角形处可见其具体数值。 ### 3. 注意事项 1. 避免直接测量市电电压。 2. 输入信号的最大峰峰值不要超过50V。 3. 确保电源不超过16V供电限制。 ### 4. 技术指标 - **最高实时取样率:** 2M点/秒,精度8位 - **模拟频带宽度:** DC至1MHz - **垂直灵敏度:** 从0.1V到5V(按1、2、5递增) - **输入阻抗:** 1兆欧姆 - **耦合方式:** 直流/交流 - **信号电压范围:** ±50伏特 - **水平时基范围:** 从5微秒至1分钟(按1、2、5递增) - **触发模式:** 自动,常规和单次触发选项 - **边沿类型选择:** 上升或下降沿均可作为触发电平的参考点 **频率计:** - 测量范围:最高可达10MHz - 周期测量上限为100秒 - 灵敏度设定在3V峰值水平
  • USB可RGB LED灯条控制说明等)-
    优质
    本项目提供了一种USB可编程RGB LED灯条控制器的设计方案,包括详细的硬件配置和软件代码。该控制器能够通过USB接口接收信号,实现对LED灯光颜色的灵活控制,并附有详尽的设计文档以供参考学习。 USB可编程RGB LED灯条显示控制器描述:该电路设计主要应用于可编程的RGB LED灯条,并且控制板上自带电源插孔。这款设备为可编程LED灯条提供了便捷的USB控制方式,与Linux(包括Raspberry Pi)、Mac和Windows平台兼容。它可以以高帧率驱动多达700个LED RGB彩灯。 该控制器基于Python软件库BiblioPixel支持AllPixel Mini功能,可以创建并控制RGB LED灯条动画。它支持所有流行的LED条芯片组,例如:LPD8806、WS2801、WS2811/WS2812(NeoPixel)、WS2811 400kHz、APA102(DotStar)、TM1809、TM1803、TM1804、UCS1903、P9813和SM16716。使用非常方便,用户无需担心芯片组协议或电平转换器等技术问题。 只需插入电源并连接您的LED灯条后设置相应的芯片组代码即可开始显示效果。控制器通过USB端口进行控制,并且支持Python的BiblioPixel库驱动超过700像素及多个AllPixel Minis作为一个功能(这是BiblioPixel的一个特性)。 此外,该设备可以通过板载直流桶式插座为5V或12V LED类型供电,最大电流可达5A。通过安装附带的保护二极管也可以直接从USB电源驱动少量LED灯条。我们还提供了动画库例子以帮助用户快速启动并运行项目。 新版本改进包括:无需焊接 - 所有零件都已预先焊好;较小尺寸设计为1.6 x 1.2英寸(40.6 x 30.5 mm);完全向后兼容,所有为AllPixel编写的代码同样适用于Mini版本。此外,USB Micro连接器也进行了更新以适应更常见的标准。 请注意:以上描述均未包含任何联系方式或网址信息。
  • )烈火微型四轴遥控相关资料(、固、制作等)-
    优质
    本资源分享烈火微型四轴飞行器及其遥控系统的全面资料,涵盖硬件设计、程序源代码与固件,以及详细的制作流程和电路设计方案。 附件内容分享了航模教学资料及烈火微型四轴套件的相关信息,并包括遥控STM32 MPU6050飞控(远距离版)的实物截图。
  • 多通道无线充系统)-
    优质
    本项目介绍了一种多通道无线充电器的设计,涵盖硬件搭建与软件编程。提供详细的电路图和源代码,并配有深入研究的学术论文。 目前市场上无线充电设备众多且技术相对成熟,但大多数产品主要面向移动市场,并不适用于如万用表这样的专业工具。鉴于实验室环境中对万用表的使用需求,我们采用符合Qi协议标准的BQ500211芯片作为发射端平台,并在万用表内部集成基于BQ51013A设计的接收电路,以实现无线充电功能。 该方案支持8.4V可充电方形电池供电方式,在实际操作中无需频繁更换电池。只需将设备放置于指定位置即可进行便捷充电,且系统具备自动断电机制确保电池不会因过度充电而损坏,从而简化实验室管理流程并提升工作效率。 此外,我们还开发了一种多通道无线充电解决方案,同样遵循Qi协议标准,并主要针对低功率电器(如万用表)的供电需求。此方案能够通过多个发射模块构建大规模充电平台,并利用STM32F4 Discovery作为主控单元配合迪文触控屏展示实时状态信息并进行操作控制。 该系统在运行过程中具备异物检测和自动充断电功能,且能耗低、效率高,支持同时为多台设备提供便捷的无线充电服务。
  • RK3399核心板图和SDK——
    优质
    本资源提供RK3399核心板详尽硬件电路图及SDK源码,旨在帮助开发者深入了解其内部架构与工作原理,加速产品研发进程。 研华科技发布了一篇关于为工业应用设计卓越NVMe SSD的白皮书。随着PCIe SSD技术的发展成熟,它已经成为某些市场的重要存储产品选择。 瑞芯微RK3399核心板采用六核64位处理器(A72x2+A53x4),主频高达2.0GHz。该核心板支持多路显示功能,包括双MIPI、HDMI、eDP和DisplayPort接口,可实现双屏同显或异显。此外还配备多种网络接口如双频WIFI、Bluetooth 4.1、千兆以太网以及Mini PCIE(用于扩展3G/4G通讯模块)。高性能外设包括USB3.0接口及PCIe M.2(M-Key) 接口,适合NVMe SSD的扩展。 核心板采用先进的10层布线工艺设计,尺寸为82mm x 63mm,在不同环境下的性能表现稳定可靠。支持Android、Linux和Ubuntu等多种操作系统,并且兼容Phoenix与Flint OS桌面办公系统。源代码开放便于企业进行二次开发,有助于降低研发门槛并加快产品上市时间。 RK3399核心板广泛应用于各种场景中,如入门级Firefly-RK3399硬件及SDK源码固件等项目设计。
  • 基于PT1000传感的温控智能风扇报告)-
    优质
    本项目提供了一种基于PT1000温度传感器的温控智能风扇设计方案,包括详细的硬件配置与软件编程指导,并附有完整的设计报告和源代码。适合电子爱好者和技术人员参考学习。 温控智能风扇概述:本次项目以新唐公司的NuTiny-SDK-M451为核心,通过PT1000温度传感器检测当前的环境温度,并根据采集到的数据判断是否需要调整降温系统或升温系统来调节当前温度,从而实现对环境温度的有效控制。由于目前技术限制,该项目暂时仅采用风扇作为改变温度的方式。
  • TGB-301移动原理图、PCB、BOMGerber)-
    优质
    本资源分享了TGB-301型号移动电源详细的电路设计方案,包括原理图、PCB布局、物料清单(BOM)以及Gerber生产文件,为电子工程师提供全面的设计参考。 前言: 提到电源厂商,或许大家对Vicor公司不太熟悉。这家公司成立于1981年,是一家专注于电源技术研发的美国企业,在多个行业领域都有广泛应用,包括高性能计算机、电信网络基础设施、工业设备与自动化以及交通航空和国防电子等市场。总的来说,Vicor公司的核心业务是设计各种类型的电源模块。 接下来我们将介绍一款名为TGB-301的移动电源的设计过程,该产品采用佑华AM8EB151A单片机作为主控芯片,并使用AP5056芯片来控制充电电路的工作。 附件中包括了以下内容: -TGB-301移动电源原理图和PCB设计文件(其中PCB为PDF格式) -量产Gerber文件 -装配图纸 -BOM清单