Advertisement

LINGO中maxmin动态规划问题

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本简介探讨在LINGO软件环境下解决包含最大最小化目标的动态规划问题的方法和技巧,旨在优化决策过程中的风险管理和收益最大化。 可以使用该程序解决maxmin问题,在运行时需要将代码中的路径改为自己的文档路径。此程序可用于求解非线性规划问题;如果仅需求解最大值或最小值,可去掉“>=c”这一条件,并直接用max或min。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LINGOmaxmin
    优质
    本简介探讨在LINGO软件环境下解决包含最大最小化目标的动态规划问题的方法和技巧,旨在优化决策过程中的风险管理和收益最大化。 可以使用该程序解决maxmin问题,在运行时需要将代码中的路径改为自己的文档路径。此程序可用于求解非线性规划问题;如果仅需求解最大值或最小值,可去掉“>=c”这一条件,并直接用max或min。
  • LINGO的非线性
    优质
    本文章深入探讨了在数学优化软件LINGO中如何处理复杂的非线性规划问题,包括建模技巧和求解策略。 LINGO非线性规划程序可以直接运行,属于数学建模中的非线性规划。
  • C++总结
    优质
    本文档总结了在C++编程中解决动态规划问题的关键技巧和常用方法,涵盖从基础概念到复杂应用案例的全面解析。 ### C++ 动态规划问题汇总 #### 一、引言 动态规划(Dynamic Programming,简称 DP)是一种解决多阶段决策过程最优化问题的方法。它适用于具有重叠子问题和最优子结构特性的问题。本篇文章主要针对一些经典的动态规划题目进行归纳总结,并给出了解决方案和思路。 #### 二、动态规划基础知识回顾 在深入分析题目之前,先简要回顾一下动态规划的基本概念: - **状态定义**:确定动态规划问题中的状态变量。 - **状态转移方程**:定义如何从一个状态转移到另一个状态。 - **边界条件**:定义初始状态或特殊情况下的值。 - **方向求解**:通常有自底向上(迭代)和自顶向下(递归 + 记忆化)两种方式。 #### 三、具体题目解析 ##### 1. 爬楼梯的最少成本 **题目描述**:给定一个非负整数数组 `cost`,其中 `cost[i]` 表示第 `i` 个阶梯的体力花费值。目标是从起点到达顶层的最小花费。可以选择从第 0 或第 1 个阶梯开始。 **解题思路**: - **状态定义**:`dp[i]` 表示到达第 `i` 个阶梯所需的最小花费。 - **状态转移方程**:`dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2])`。 - **边界条件**:`dp[0] = cost[0]`, `dp[1] = cost[1]`。 - **最终结果**:返回 `min(dp[n-1], dp[n-2])`。 **代码实现**: ```cpp class Solution { public: int minCostClimbingStairs(vector& cost) { vector dp(cost.size() + 1); dp[0] = cost[0]; dp[1] = cost[1]; for (int i = 2; i < cost.size() + 1; i++) { dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]); } return min(dp[cost.size()], dp[cost.size() - 1]); } }; ``` --- ##### 2. 粉刷房子 **题目描述**:给定一个 `n x 3` 的二维数组 `costs`,其中 `costs[i][j]` 表示粉刷第 `i` 个房子为颜色 `j` 的花费。目标是最小化粉刷所有房子的总成本,且相邻房子颜色不同。 **解题思路**: - **状态定义**:`dp[i][j]` 表示粉刷到第 `i` 个房子并将其涂成颜色 `j` 的最小成本。 - **状态转移方程**:`dp[i][j] = costs[i][j] + min(dp[i-1][k])` 其中 `k ≠ j`。 - **边界条件**:`dp[0]` 直接等于 `costs[0]`。 - **最终结果**:返回 `min(dp[n-1][0], dp[n-1][1], dp[n-1][2])`。 **代码实现**: ```cpp class Solution { public: int minCost(vector>& costs) { int m = costs.size(); int n = m == 0 ? 0 : costs[0].size(); vector> dp(m, vector(n)); dp[0] = costs[0]; for (int i = 1; i < m; i++) { for (int j = 0; j < n; j++) { int tempMin = INT_MAX; for (int k = 0; k < n; k++) { if (k != j) { tempMin = min(tempMin, dp[i - 1][k]); } } dp[i][j] = costs[i][j] + tempMin; } } return *min_element(dp.back().begin(), dp.back().end()); } }; ``` --- ##### 3. 翻转字符 **题目描述**:给定一个由 `0` 和 `1` 组成的字符串 `s`,目标是通过最少次数的翻转操作使得字符串变成“单调递增”的形式,即所有的 `0` 在 `1` 的前面。 **解题思路**: - **状态定义**:`dp[i][0]` 表示前 `i` 个字符翻转 `0` 成 `1` 的最小翻转次数;`dp[i][1]` 表示前 `i`
  • 拔河比赛
    优质
    本文探讨了在拔河比赛中运用动态规划解决策略优化的问题,通过建模分析参赛队伍的力量分配与战术调整,旨在提升比赛胜率。 题目描述:小明所在的班级即将举行一次拔河比赛。班主任计划将所有学生分成两队参赛,并确保每个人都要参加。同时,为了保证公平性,两队的人数之差不能超过1人;并且希望两个队伍的总体重尽可能接近,最好能够完全相同。 输入说明: - 输入数据包含多组测试案例。 - 每个测试案例的第一行会给出一个正整数n(2 ≤ n ≤ 100),表示班级中共有n名学生参加比赛。 - 接下来的n行中,每行将提供一个整数值w(1 ≤ w ≤ 450),代表每个学生的体重。 输出说明: 对于每一组输入数据,请分别计算并输出两个队伍各自的总重量。请按照升序排列显示两队的总重量。
  • 】电路布局
    优质
    简介:本项目探讨了利用动态规划算法解决电路布局优化的问题,旨在寻找最短连线路径或最小成本配置,提高电路板设计效率和性能。 问题描述:在一块电路板的上、下两端分别有n个接线柱。根据电路设计要求,用导线(i, π(i)) 将上端接线柱i与下端接线柱π(i)相连,其中π(i), 1 ≤ i ≤ n 是{1,2,…,n}的一个排列。每条导线(I, π(i)) 称为该电路板上的第i条连线。对于任何1 ≤ i ≤ j ≤ n,第i条连线和第j条连线相交的充要条件是π(i) > π(j)。给定一个具体的例子:π(i)={8,7,4,2,5,1,9,3,10,6}。 在制作电路板时需要将这n条连线分布到若干绝缘层上,在同一层上的连线不相交。电路布线问题要求确定哪些连线安排在第一层上以使得该层上有尽可能多的连线。换句话说,这个问题是寻找导线集Nets = {i, π(i), 1 ≤ i ≤ n} 的最大不相交子集。 最优子结构性质:记 N(i,j) = {t|(t,π(t)) ∈ Nets,t ≤ i, π(t) ≤ j}. N(i,j)的最大不相交子集为MNS(i,j),Size(i,j)=|MNS(i,j)|。即: 1. 当i=1时, 2. 当i>1时,分两种情况: ① 若j <π(i),此时 (i, π(i)) 不属于N(i, j)。 该问题的核心在于确定导线集的最大不相交子集以减少连线之间的交叉。
  • C语言的经典
    优质
    本文章深入探讨了C语言中经典的动态规划问题,通过实例解析和代码演示,帮助读者理解如何在编程实践中应用动态规划算法。 关于最长递增公共子序列、最长公共子串以及最小编辑代价这些经典的动态规划问题的详细代码实现可以进行深入探讨。这些问题在算法学习中非常重要,并且广泛应用于各种实际场景,如文本比较、基因测序等领域。通过编写和分析这些问题的解决方案,可以帮助我们更好地理解动态规划的核心思想及其应用技巧。
  • 利用MATLAB解决
    优质
    本课程专注于使用MATLAB软件来求解各类动态规划问题,旨在通过实例教学帮助学员掌握算法设计与优化技巧。 使用Matlab求解动态规划问题的一个例子是解决具体的生产与存货管理问题。这类应用可以帮助企业优化其库存策略,在满足市场需求的同时最小化成本。通过建立合适的数学模型并利用Matlab的计算能力,可以有效地分析不同情景下的最优决策路径。这种方法在实际运营中具有重要的实用价值,能够帮助企业提高效率和盈利能力。
  • 利用解决TSP
    优质
    本文探讨了如何运用动态规划策略来优化求解旅行商问题(TSP),通过分析不同路径的成本,提出了一种高效的算法方案。 某推销员需要从城市v1出发,依次访问其他六个城市v2、v3……v6各一次且仅一次,并最终返回起点城市v1。已知各个城市之间的距离矩阵为D(具体数值见代码)。请问该推销员应如何规划路线以确保总的行程最短?