Advertisement

LTE OFDM技术的初步原理阐述。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
循环前缀幅度保护间隔的FFT积分时长,以及OFDM符号长度,都对无线通信系统至关重要。循环前缀是指在当前符号之后所重复的一段样点值序列,其主要目的是确保子载波间的正交性,从而避免信号干扰。只要系统中的各个路径时延均小于预设的保护间隔,那么FFT的积分时间长度就可以有效地容纳整数个多径子载波波形。循环前缀CP(Cyclic Prefix)的时间长度也需要精确控制。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LTE OFDM信道估计基本介绍
    优质
    本文章介绍了在LTE OFDM系统中常用的信道估计技术的基本原理和方法。通过理论分析与仿真验证相结合的方式,深入探讨了信道估计的重要性及其对系统性能的影响。 在加入循环前缀后的正交频分复用(OFDM)系统可以被看作是由N个独立的并行子信道组成的。假设忽略信道噪声的影响,在每个子信道上接收到的信号等于该子信道上的发送信号与相应频率特性的乘积。如果能够通过某种估计方法预先了解这些频谱特性,那么将接收信号除以相应的频谱特性就能实现正确解调。 常见的信道估计技术包括基于导频信道的方法和基于导频符号(参考信号)的方法。由于多载波系统具有时域与频域的二维结构特征,所以采用导频符号进行辅助信道估计更为灵活有效。
  • DFT-S-OFDM详解-LTE基本及关键教程
    优质
    本教程深入讲解DFT-S-OFDM技术,涵盖LTE的基本原理与关键特性。适合通信领域工程师和技术爱好者学习参考。 在LTE系统的上行链路部分采用了SC-FDMA技术以降低峰均功率比(PAPR)并提高功率效率,而DFT-S-OFDM是实现这一目标的关键方法之一。 从原理上看,DFT-S-OFDM可以视为一种特殊的频域生成方式的SC-FDMA。具体来说,在进行IFFT调制之前,它对输入信号进行了傅立叶变换预编码处理。与传统的正交频分复用(OFDM)相比,DFT-S-OFDM的主要区别在于:在OFDM中,符号信息是直接映射到一系列相互垂直的子载波上;而在DFT-S-OFDM技术里,则是对M个输入符号的信息进行调制,并分布于多个正交的子载波之上。 单载波传输本质上是指星座点(即数据)在整个分配给它的频谱范围内均匀地分布在各个频率位置。值得注意的是,虽然单载波本身并不一定意味着拥有较小的PAPR值,但在实践中通常更容易实现较低的峰均功率比。然而,如果在经过DFT变换后得到的信号不是等间隔分布或者没有集中在所分到的子载波上,则仍然可以视为一种单载波传输方式,但此时其PAPR会相对较大。 综上所述,通过采用DFT-S-OFDM技术可以在一定程度上解决SC-FDMA系统中关于降低峰均功率比和提高功率效率的问题。
  • OFDMLTE基本
    优质
    本文介绍了正交频分复用(OFDM)技术的基本概念及其在长期演进(LTE)通信系统中的应用原理。通过阐述其关键技术特点和优势,帮助读者更好地理解OFDM在提高无线传输效率方面的作用。 ### LTE OFDM 基本原理 #### 一、无线信道特性 在讨论LTE OFDM的基本原理之前,首先需要了解无线信道的一些基本特性。这些特性对于理解OFDM技术如何有效对抗无线信道中的各种衰落至关重要。 1. **路径损耗(大尺度衰落)**: - 电波在自由空间内的传播损耗遵循特定的规律。 - 这种衰落主要影响无线通信系统的覆盖范围。 2. **阴影衰落(中等尺度衰落)**: - 地形起伏、建筑物和其他障碍物引起的信号减弱现象。 - 具有缓慢变化的特点,通常与环境相关较大。 3. **多径衰落(小尺度衰落)**: - 由于信号通过多个路径到达接收端,造成幅度和相位的变化。 - 可能会导致频率选择性和时间选择性问题。 4. **频率选择性衰落**: - 当不同路径的相对时延与一个符号的时间相比不可忽略时,会发生符号间干扰(ISI)。 5. **时间选择性衰落**: - 移动设备的运动导致无线信道呈现动态变化特性。 - 引起多普勒频移和频率偏移问题。 #### 二、OFDM概述 - **定义**:OFDM是一种利用多个子载波并行传输数据流的技术,以提高通信效率。 - **目的**:解决上述提到的无线信道中的衰落问题,特别是频率选择性和时间选择性衰落。 #### 三、OFDM关键技术 1. **正交性**: - 确保各个子载波之间相互独立且无干扰。数学上可以通过公式表示为( int_{0}^{T} e^{jomega_m t} e^{-jomega_n t} dt = begin{cases} T & m=n 0 & m neq n end{cases} )。 2. **带宽利用率高**: - 子载波的重叠和正交性设计提高了频谱效率。 - 相较于传统的FDM,OFDM能更高效地利用频率资源。 3. **抗衰落能力强**: - 数据分布于多个子载波上,即使部分子载波受到严重衰减也能保证较高的可靠性。 4. **IFFTFFT实现**: - 利用快速傅立叶变换(FFT)将时域信号转换为频域信号。 - 快速傅立叶逆变换(IFFT)用于反向过程,即从频域转回时域。 #### 四、OFDM在上下行链路的应用 - **下行链路**: 在LTE系统中,OFDM广泛应用于下行链路传输以支持高速数据需求。 - **上行链路**: LTE使用SC-FDMA(单载波频分多址)技术来减少终端设备的发射功率。 #### 五、OFDM优缺点 - **优点**: - 高频率效率:通过并行方式传输提高频谱利用率。 - 抗多径衰落能力强,即使在复杂环境中也能保持良好性能。 - 实现简单:利用FFTIFFT进行调制和解调过程。 - **缺点**: - 较高的峰值平均功率比(PAPR)可能导致放大器非线性失真问题。 - 需要精确的频率和时间同步机制,否则可能影响系统稳定性。 - 导频信号及保护间隔等开销较大。 #### 六、总结 通过对LTE OFDM基本原理的学习,可以了解到OFDM技术是如何通过其独特的设计来提高无线通信系统的性能。从分析无线信道特性到介绍OFDM关键技术,并且具体应用在上下行链路中,每一部分都揭示了OFDM如何应对复杂多变的无线环境挑战。此外,OFDM不仅解决了频率选择性和时间选择性衰落问题,还提高了频谱效率和数据传输速度,在现代移动通信技术中占据重要地位。
  • LTE OFDM基础简介
    优质
    《LTE OFDM基础原理简介》旨在为读者提供一个全面而简明的概念框架,介绍正交频分复用(OFDM)技术及其在长期演进(LTE)通信系统中的应用。本文将重点讲解OFDM的工作机制、优势及挑战,并探讨其如何支持高效的数据传输和多用户接入。适合初学者和技术爱好者阅读,帮助快速理解这一关键技术的基础原理。 中兴通讯学院课程《LTE》中的OFDM介绍包括以下内容: - 了解OFDM的基本概念 - 理解OFDM的基本原理 - 掌握OFDM的优缺点分析 - 深入理解OFDM的关键技术 - 学习OFDM在上下行链路中的应用
  • ChatGPT
    优质
    《ChatGPT技术原理概述》旨在解析人工智能模型ChatGPT的核心机制与工作流程,深入浅出地介绍其在自然语言处理领域的创新技术。 ChatGPT的技术原理总结主要包括以下几个方面:首先,它基于Transformer架构的自然语言处理模型;其次,该模型采用了大量高质量的数据进行训练,并且使用了强化学习技术来优化其对话生成能力;最后,在实际应用中,通过不断调整和改进算法参数以及引入更多样化的数据集等方式进一步提升了ChatGPT的表现。
  • 4G LTE/LTE-Advanced 移动宽带中文简
    优质
    本资料深入浅出地介绍了4G LTE及LTE-Advanced移动宽带技术的基本概念、工作原理及其发展现状与未来趋势,适合通信领域初学者和技术爱好者阅读。 爱立信研究院的经典著作,《4G LTE / LTE-Advanced for Mobile Broadband》是LTE领域的权威经典之作。作者为Erik Dahlman、Stefan Parkvall 和 Johan Skold,该书的英文名是“4G LTE / LTE-Advanced for Mobile Broadband”,中文译名为《4G LTE / LTE-Advanced宽带移动通信技术》。
  • 3GPP LTE及系统设计
    优质
    《3GPP LTE技术原理及系统设计》一书深入剖析了长期演进(LTE)技术的核心理论与实际应用,涵盖从基础概念到复杂系统的全方位知识。 资源名称:3GPP长期演进(LTE)技术原理与系统设计 资源太大,已上传至百度网盘,链接请见附件,有需要的同学自取。
  • LTE网络与概
    优质
    《LTE网络原理与概述》一书深入浅出地介绍了第四代长期演进(LTE)无线通信技术的基本概念、架构及关键技术,适合通信行业从业者和相关专业学生阅读。 LTE网络基础包括其架构、结构及网元功能的介绍。此外还涵盖了LTE系统接口和协议的内容,以及空口协议栈结构的讲解。关键技术也是讨论的重点之一。
  • BP神经网络基本(清晰
    优质
    本文章详细解析了BP神经网络的基本工作原理和运行机制,旨在为读者提供一个清晰、全面的理解框架。 这段文档介绍了BP神经网络的原理,内容清晰易懂,非常适合初学者阅读。