Advertisement

基于模糊神经网络的强化学习在机器人导航中的应用研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了将模糊神经网络与强化学习相结合的方法,应用于提高机器人自主导航能力的有效性和适应性。通过模拟实验验证了该方法能显著提升机器人的路径规划和避障性能,在复杂环境中展现出更强的鲁棒性和灵活性。 本段落研究了一种基于行为的移动机器人控制方法,结合了模糊神经网络与强化学习理论来构建一个模糊强化系统。该系统不仅可以获取到模糊规则的结果部分以及隶属度函数参数,还能够解决连续状态空间和动作空间中的强化学习问题。通过使用残差算法进行神经网络的学习过程,保证了解决复杂环境导航任务时的快速性和收敛性。将此系统的成果应用于反应式自主机器人的行为控制器中,有效解决了机器人在复杂环境下的导航难题。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究探讨了将模糊神经网络与强化学习相结合的方法,应用于提高机器人自主导航能力的有效性和适应性。通过模拟实验验证了该方法能显著提升机器人的路径规划和避障性能,在复杂环境中展现出更强的鲁棒性和灵活性。 本段落研究了一种基于行为的移动机器人控制方法,结合了模糊神经网络与强化学习理论来构建一个模糊强化系统。该系统不仅可以获取到模糊规则的结果部分以及隶属度函数参数,还能够解决连续状态空间和动作空间中的强化学习问题。通过使用残差算法进行神经网络的学习过程,保证了解决复杂环境导航任务时的快速性和收敛性。将此系统的成果应用于反应式自主机器人的行为控制器中,有效解决了机器人在复杂环境下的导航难题。
  • 资源分配型.zip
    优质
    本研究探讨了将图神经网络与强化学习相结合的方法在优化网络资源分配问题上的应用。通过设计创新算法,提升了复杂网络环境下的决策效率和准确性。 强化学习(Reinforcement Learning, RL)是机器学习的一种方法论,用于描述智能体在与环境互动过程中通过策略优化来最大化回报或达成特定目标的过程。其特点是不依赖于监督数据,仅依靠奖励信号进行反馈。 常见的模型为马尔可夫决策过程(Markov Decision Process, MDP)。根据具体条件的不同,强化学习可以分为基于模式的和无模式的、主动式与被动式的几种类型。此外还有逆向强化学习、层次化强化学习以及针对部分可观测系统的强化学习等变体。求解这类问题的方法主要包括策略搜索算法及值函数方法。 该理论借鉴了行为主义心理学,强调在线学习,并试图在探索未知行动和利用已知信息之间找到平衡点。不同于监督式与非监督式的学习方式,它不需要预先提供的数据集,而是通过环境对智能体动作的反馈来调整模型参数并获取新的知识。强化学习的应用范围广泛,在博弈论、自动控制等领域都有所涉及,并且在围棋及电子游戏等复杂问题上已能够达到人类水平的表现。 此外,在工程领域中也有大量应用实例,比如Facebook开发了开源平台Horizon用于优化大规模生产系统中的决策过程;而在医疗保健方面,则可以通过强化学习为患者制定治疗方案。这种技术的优势在于可以利用以往的经验来寻找最优策略,并不需要对生物系统的数学模型等先验信息有深入理解。 总结而言,通过智能体与环境之间的互动以最大化累积回报为目标的强化学习,在众多领域展现出了巨大的应用潜力和价值。
  • 足球决策系统
    优质
    本研究探讨了将神经网络技术应用于机器人足球比赛中的决策制定过程,旨在提升机器人的自主判断与团队协作能力。通过模拟实战环境优化算法,以期实现更高效的比赛策略和战术执行。 这篇论文研究了基于神经网络的机器人足球决策系统在FIRA 5VS5比赛中的应用,感觉内容非常精彩,想与大家分享一下~嘿嘿~
  • PID光照度控制
    优质
    本研究探讨了改进型PID神经网络技术在自动调节照明系统中光照强度的应用,旨在提高能源效率和用户体验。通过结合传统PID控制器与现代人工智能算法的优势,我们提出了一种创新的方法来适应不同环境下的光需求变化,从而实现智能化、高效节能的室内或室外灯光控制解决方案。 针对人们在室内不同区域对光照强度的不同需求,提出了一种基于PID神经网络的光照控制算法,并利用改进的粒子群算法优化了PIDNN的连接权值。为了验证该算法的有效性,将其应用于一个实例模型并进行了仿真分析。结果表明,该方法能够满足室内各区域不同的照明要求,显著提升了系统的整体性能,减少了超调现象,缩短了调节时间,具有良好的动态特性。
  • CrowdNav: [ICRA19] 注意力深度群感知
    优质
    CrowdNav是一项基于ICRA 19的研究成果,它利用注意力机制和深度强化学习技术解决机器人在拥挤环境中自主导航的问题。通过模拟大量行人数据训练模型,使得机器人能够有效避免障碍物,并预测行人的行为路径,确保了复杂环境下的高效安全通行能力。 人群导航存储库包含了我们2019年ICRA论文的代码。更多细节请参阅相关论文。 对于在拥挤环境中操作的机器人而言,实现高效且符合社会规范的机动性是至关重要的任务,但同时也是极具挑战性的课题。近期研究显示,深度强化学习技术能够帮助机器学习到与人协作的行为策略。然而,在人群规模增加的情况下,这些方法通常会因将问题简化为单一的人机交互而使合作效果减弱。 在本项工作中,我们旨在超越一阶的人机互动模型,并更精确地模拟人群—机器人互动(CRI)。为此,我们提出了以下建议:一是重新审视利用自注意力机制的成对互作;二是构建深度强化学习框架以同时处理人机和人际交互。我们的模型能够捕捉密集人群中发生的人与人间的相互作用,这间接影响了机器人的预期表现能力。 此外,我们还提出了一种共享关注点的方法,该方法能识别周围人在未来状态中的集体重要性。一系列实验表明,通过这样的设计思路,我们的模型不仅具备预测人类动态的能力,并且在时间效率上也表现出色。
  • PID串级温度控制.pdf
    优质
    本文探讨了将模糊神经网络PID控制器应用于串级温度控制系统中,通过仿真实验验证其有效性和优越性,为工业过程控制提供了一种新的解决方案。 基于模糊神经网络PID的串级温度控制系统的研究主要探讨了如何利用模糊逻辑与神经网络技术优化传统的比例-积分-微分(PID)控制器,以提高温度控制系统的性能。该研究通过结合这两种方法的优势,旨在实现更精确、响应更快且鲁棒性更强的温度调节机制。
  • 逆运动算法
    优质
    本研究致力于开发和优化基于神经网络技术的机器人逆运动学解决方案,旨在提高计算效率与精度,推动机器人技术在复杂环境中的应用。 基于神经网络的机器人逆运动学算法研究了一种利用神经网络技术解决机器人逆运动学问题的方法。这种方法通过训练神经网络模型来预测机器人的关节角度,从而实现从目标位置到关节配置的有效转换。相比传统解析法或迭代法,该方法在处理复杂结构和非线性约束时表现更佳,并且具有更高的计算效率与适应能力。
  • 通信与
    优质
    本研究聚焦于探索和分析神经网络技术如何革新通信及网络领域,包括但不限于数据传输优化、网络安全增强及智能路由算法开发。通过理论探讨与实践案例相结合的方式,深入挖掘该领域的未来发展趋势和技术挑战。 神经网络是一门模仿人类大脑构造与功能的智能科学。它具备快速反应能力,能够实时处理事务;具有卓越的自组织、自学习能力;在复杂环境下能有效逼近任意非线性系统,并迅速找到满足多种约束条件问题的最佳解决方案;还拥有高度鲁棒性和容错能力等优点,在通信领域得到了广泛应用。 神经网络尤其适用于自适应信号处理。例如,利用多层前馈神经网络可以学习和映射非线性信号过程中的输入输出关系,从而实现各种信号与信息的滤波检测。此外,自组织神经网络能够对自回归信号及图像进行分类处理。
  • Python图资源分配课程设计
    优质
    本课程设计探讨了利用Python编程结合图神经网络与强化学习技术,在复杂网络环境中优化资源分配问题。通过该研究,旨在提高网络系统的效率和响应能力。 【作品名称】:基于Python图神经网络的强化学习网络资源分配模型 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】 执行步骤如下: 首先,创建虚拟环境并激活。 ```bash virtualenv -p python3 myenv source myenv/bin/activate ``` 然后,安装所有所需的包。 ```bash pip install -r requirements.txt ``` 注册自定义的gym环境。 ```bash pip install -e gym-environments ``` Python中的egg文件类似于Java中的jar包,将一系列python源码文件、元数据文件和其他资源文件压缩成zip格式,并重新命名为.egg 文件。这样可以作为一个整体进行发布。
  • BP口预测.pdf
    优质
    本论文探讨了BP(反向传播)神经网络模型在人口预测领域的应用,通过建立数学模型来提高对未来人口趋势预测的准确性与可靠性。 本段落探讨了将34神经网络应用于人口预测模型的研究,并讨论了其可行性、网络结构设计和学习算法。通过计算实例表明,基于神经网络的人口预测模型具有客观性高、精度好且易于操作的特点。34神经网络是一种误差反向传播的多层前馈型网络,它的信息处理机制由神经元激活特性和网络拓扑结构决定;其中,神经元的激活函数采用非线性的89:;(9<函数形式。该模型的网络架构包括输入层、隐含层和输出层三个部分,并且同一层级内的节点之间没有连接关系,不同层级之间的节点则是前向相联的。