Advertisement

基于TDLAS的矿井瓦斯气体浓度监测系统设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本设计提出了一种基于可调谐二极管激光吸收光谱(TDLAS)技术的矿井瓦斯气体浓度监测系统。该系统能够精确、实时地检测矿井内甲烷等有害气体的浓度,有效预防瓦斯爆炸事故的发生,保障煤矿工人的生命安全和生产的安全稳定运行。 为了实现煤矿井下瓦斯气体浓度的准确、快速、实时监测与预警,我们基于可调谐半导体激光吸收光谱学(TDLAS)原理,在甲烷分子1.66μm处特征吸收波长的基础上,结合波长调制和谐波检测技术,设计了一种光谱吸收型瓦斯检测系统。该系统具有光路简单、选择性强及灵敏度高等特点,并通过蓝牙技术和矿用局域网相结合的数据传输结构,实现了局部无线数据传输与地面远程监测的方案。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • TDLAS
    优质
    本设计提出了一种基于可调谐二极管激光吸收光谱(TDLAS)技术的矿井瓦斯气体浓度监测系统。该系统能够精确、实时地检测矿井内甲烷等有害气体的浓度,有效预防瓦斯爆炸事故的发生,保障煤矿工人的生命安全和生产的安全稳定运行。 为了实现煤矿井下瓦斯气体浓度的准确、快速、实时监测与预警,我们基于可调谐半导体激光吸收光谱学(TDLAS)原理,在甲烷分子1.66μm处特征吸收波长的基础上,结合波长调制和谐波检测技术,设计了一种光谱吸收型瓦斯检测系统。该系统具有光路简单、选择性强及灵敏度高等特点,并通过蓝牙技术和矿用局域网相结合的数据传输结构,实现了局部无线数据传输与地面远程监测的方案。
  • 物联网技术
    优质
    本项目旨在利用物联网技术构建一个高效的矿井瓦斯监测系统,实现实时监控、预警及数据分析功能,以保障矿山安全和提高生产效率。 本段落介绍了一种基于物联网技术的煤矿井下瓦斯监测系统,旨在满足瓦斯监测工作的需求。该系统采用了Zigbee无线传感器网络,具备低成本、低功耗及易于维护和组网的特点。整个系统由数据采集模块与Zigbee通讯模块组成,并通过控制中心实现对煤矿井下运行状况的全面监控。
  • 与氧嵌入式
    优质
    本项目旨在设计一种便携式的嵌入式监测系统,用于实时检测环境中的瓦斯和氧气浓度,确保工业作业安全。 为了满足煤矿井下安全生产的需求,设计了一种能够同时监测瓦斯和氧气浓度的系统。该系统包括气敏传感器、模数转换器、单片机控制器、显示器以及报警装置等组件。 此系统采用低能耗且支持低压供电的AT87LV51处理器,并使用MQ-9与TiO2气敏电阻作为探头,配备高亮度LED显示屏。其特点在于精度高、显示效果好和可靠性强,同时具备嵌入其他电气设备中的灵活性。
  • (完整Word版)PLC.doc
    优质
    本文档介绍了基于PLC技术设计的煤矿瓦斯浓度监测系统,详细阐述了系统的硬件架构、软件编程及实际应用效果,旨在提高矿井安全管理水平。 基于PLC的煤矿瓦斯浓度监控系统旨在通过提高矿井通风系统的安全性、稳定性和节能性来保障煤矿生产安全。该系统采用三菱可编程逻辑控制器(PLC)为核心,结合变频器与传感器技术,利用瓦斯浓度和井下压力作为主要参数对矿井风机的工作过程及运转速度进行精准控制。 在煤矿环境中,高浓度的瓦斯气体是引发爆炸事故的主要原因之一。因此,在该监控系统中使用了专门设计用于检测瓦斯浓度的传感器,并将采集到的数据传输至PLC控制器内进行实时分析和处理,从而确保矿井通风机能够根据实际需要自动调整其工作状态。 此外,变频器作为控制系统中的重要组成部分之一,负责接收来自PLC发出的指令信号并将其转换为适用于电机控制的实际操作命令。通过这种方式可以显著提升整个系统的运行效率与稳定性水平,并有助于实现能源消耗的有效降低和资源的最大化利用。 该煤矿瓦斯浓度监控系统不仅能够提高生产安全性和工作效率,在未来也有着广阔的应用前景和发展空间,特别是在政府对矿业安全生产监管力度不断加强的背景下更加凸显其重要性。随着技术进步以及新型检测手段(如机器学习、人工智能等)的应用,此类系统的性能和功能有望进一步得到优化和完善。 总之,PLC与变频器结合的技术架构为煤矿生产过程中的瓦斯浓度监控提供了高效可靠的解决方案,并且能够适应不同工业领域的多样化需求,在提高安全性的同时促进资源节约型社会建设。
  • 物联网技术
    优质
    本项目旨在设计一套基于物联网技术的矿井氧气浓度监控系统,实时监测并预警矿井内的氧气含量,保障作业人员的生命安全。 为了实现矿井氧气浓度的检测,我们提出并开发了一种基于物联网技术的矿井氧气浓度监测系统,并完成了该系统的软硬件测试。硬件部分包括传感器检测模块、路由器传输模块、数据汇集模块以及上位机模块;软件方面则采用了MSP430进行编程,实现了对氧气浓度信号的有效检测和处理。应用结果表明,此系统能够有效预防矿井内有毒气体的泄漏事件发生。
  • STM32及GSM网络
    优质
    本项目设计了一套基于STM32微控制器和GSM通信技术的矿井瓦斯监测系统,能够实时监控并远程传输瓦斯浓度数据,确保矿山安全。 为了构建安全的井下工作环境并防止因瓦斯爆炸导致的人身及经济损失,提出了一种基于STM32和GSM网络检测矿井内瓦斯参数的系统,并通过GSM网络将采集的数据发送到手机上,实现了对井下瓦斯的实时监控。这提高了工人在井下的安全系数。
  • TDLAS反演(MATLAB)
    优质
    本研究探讨了利用调制分布反馈激光吸收光谱技术进行精确气体检测,并在MATLAB环境下建立模型以实现对特定气体浓度的有效反演,为环境监测和工业安全提供技术支持。 基于可调谐半导体激光吸收光谱(TDLAS)技术的气体检测系统能够通过二次谐波信号提取浓度信息,该信号由气体吸收产生,并且可以通过浓度反演算法来获取具体的浓度数据。本段落简要介绍了TDLAS气体检测系统的原理和应用,详细描述了在Matlab环境下完成的曲线拟合及反演算法仿真过程以及FPGA内部实现的反演算法设计。此外,在一氧化碳检测系统中,利用多组不同待测浓度的数据对上述反演算法进行了验证。
  • PSO-Adam优化GRU煤模型
    优质
    本研究提出了一种结合PSO-Adam优化算法与GRU神经网络的模型,有效提升煤矿瓦斯浓度预测精度,为矿井安全提供科学依据。 煤矿瓦斯浓度的精准预测对于矿井的安全至关重要。为此,我们提出了一种基于门控循环单元(GRU)的工作面瓦斯浓度预测模型。该方法首先使用邻近均值法对数据中的缺失值与异常值进行填充,并通过MinMaxScaler技术实现实验数据的归一化处理;随后利用粒子群算法和Adam算法优化了GRU的超参数,构建了一个名为PSO-Adam-GRU的工作面瓦斯浓度预测模型。基于崔家沟煤矿的实际生产监测数据对该模型进行了训练与验证。评估标准包括平均绝对误差(MAE)、均方根误差(RMSE)以及运行时间等指标,并将该方法的预测结果与其他两种常用神经网络——BPNN和LSTM进行对比分析。 实验结果显示,PSO-Adam-GRU模型相较于其他两个模型具有更高的精度与稳定性。在瓦斯浓度预测过程中,通过使用PSO-Adam-GRU模型能够显著降低平均绝对误差(MAE)至0.058,并将均方根误差(RMSE)降至0.005。 综上所述,基于PSO-Adam-GRU的瓦斯浓度预测方法及其参数优化策略可以有效地对煤矿工作面中的瓦斯浓度进行准确且稳定的预测。该模型在处理时间序列数据时表现出色,并为矿井的安全管理提供了有价值的参考依据。
  • TDLAS反演算法应用实现
    优质
    本文探讨了基于TDLAS技术的气体检测系统的浓度反演算法应用,分析并实现了多种算法在实际测量中的效果评估。 基于可调谐半导体激光吸收光谱(TDLAS)技术的气体检测系统利用二次谐波信号携带浓度信息,并通过反演算法提取这些信息以实现精确测量。本段落简要介绍了该系统的原理,详细描述了在Matlab环境下完成曲线拟合和仿真过程以及FPGA内部设计中实现的反演算法。实验结果表明,在一氧化碳检测系统下利用多组待测浓度验证后发现:浓度反演吻合度超过99.9%,证明所采用的反演算法正确且能满足系统需求,确保了精确提取气体浓度信息的能力。此外,基于Matlab的数据分析和误差控制设计方法在产品研制及综合测试中具有广泛应用潜力。
  • 单片机警报
    优质
    本项目设计了一套基于单片机技术的煤矿瓦斯监测警报系统,能够实时检测矿井内的瓦斯浓度,并在超过安全阈值时自动发出警报,确保作业人员的安全。 随着经济的快速进步,煤炭生产的需求也日益增加。然而,在煤矿的实际运营过程中频繁发生的矿难事故促使国家和社会更加重视矿山安全问题。其中,由瓦斯爆炸引发的安全事件占据了很大比例,因此及时检测并报警瓦斯参数以及采取相应的控制措施变得尤为重要。本段落提出了一种利用PIC单片机来实现井下瓦斯监测和警报功能的系统,并在概述整体结构与实施方法的基础上,重点分析了瓦斯传感器的工作原理及其采样技术。