Advertisement

电力电子(Power Electronics)中逆变器电路的开关器件损耗与结温计算

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本研究探讨了电力电子领域中逆变器电路开关器件的能耗及其产生的结温变化,分析不同工作条件下器件损耗特性,并提出有效降低温度的方法。 # PE_LossTempCalc 电力电子(Power Electronics)逆变器电路开关器件损耗及结温计算 运行环境:Matlab R2019b (Update 6)及以上,低于R2019b版本则无法运行,因为源程序中包含有一些R2019b新增的语法。 ## 文件夹说明 **src** 文件夹 > 源程序,全部用类的方法实现 **devices** 文件夹 > excel文件存放的是各开关器件的原始数据,全部是从数据手册中得到的。excel文件的结构是设计好的,便于之后的自动处理;新增加器件时替换其中的数据即可。 > matlab data文件存放的是经过处理后得到的表征开关器件导通与开关损耗的系数,可通过Device类实现对excel文件的自动处理 **Main** 文件夹 > 应用程序,使用src文件夹中定义的类来完成一些目标,比如计算开关器件损耗及结温,并且还可以获取电路中无源器件上的电流波形等电路信息。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • (Power Electronics)
    优质
    本研究探讨了电力电子领域中逆变器电路开关器件的能耗及其产生的结温变化,分析不同工作条件下器件损耗特性,并提出有效降低温度的方法。 # PE_LossTempCalc 电力电子(Power Electronics)逆变器电路开关器件损耗及结温计算 运行环境:Matlab R2019b (Update 6)及以上,低于R2019b版本则无法运行,因为源程序中包含有一些R2019b新增的语法。 ## 文件夹说明 **src** 文件夹 > 源程序,全部用类的方法实现 **devices** 文件夹 > excel文件存放的是各开关器件的原始数据,全部是从数据手册中得到的。excel文件的结构是设计好的,便于之后的自动处理;新增加器件时替换其中的数据即可。 > matlab data文件存放的是经过处理后得到的表征开关器件导通与开关损耗的系数,可通过Device类实现对excel文件的自动处理 **Main** 文件夹 > 应用程序,使用src文件夹中定义的类来完成一些目标,比如计算开关器件损耗及结温,并且还可以获取电路中无源器件上的电流波形等电路信息。
  • PFC分析.pdf
    优质
    本论文深入探讨了PFC(功率因数校正)电路中开关器件的能耗问题,通过详尽的理论分析和计算方法,为降低电路损耗、提高效率提供了有效的技术指导。 Boost_PFC电路中开关器件的损耗分析与计算pdf讲述了如何对Boost功率因数校正(PFC)电路中的开关器件进行损耗分析及计算的方法。文档详细探讨了在该类电路设计过程中,对于提高效率、减少能量损失至关重要的开关元件的选择和优化策略。
  • 基于ANPC三热网络仿真研究,附参考文献 及传导并注入热网络 果展示了三相三...
    优质
    本文针对ANPC三电平逆变器进行损耗分析和热网络仿真研究,详细计算了开关损耗与传导损耗,并将其结果注入到热网络中。通过仿真验证了三相三电平拓扑结构的性能表现。附有相关参考文献以供深入探讨。 ANPC三电平逆变器损耗计算仿真模型参考了相关资料。 该模型用于计算开关损耗和传导损耗,并将这些损耗注入热网络。 仿真的结果显示了三相三电平逆变器的可实现输出功率与开关频率之间的关系。
  • PIC16F73PIC16F73PIC16F73PIC16F73
    优质
    本项目介绍基于PIC16F73单片机设计的逆变器电路,详细阐述了硬件构成与软件编程过程。通过优化设计提高效率和稳定性。 PIC16F73逆变器的C语言程序、PDF文档以及Protel图和仿真资料。
  • 大型磁场及涡流
    优质
    本研究聚焦于大型电力变压器内部复杂的电磁场分布及其导致的能量损耗问题,特别是涡流损耗。通过深入分析和精确建模,旨在优化设计以提高效率与性能,为电力系统提供可靠的技术支持。 大型电力变压器的电磁场与涡流损耗计算是确保其运行效率及安全的关键技术之一。随着电力系统容量的增长以及变压器结构趋向紧凑化设计,磁漏现象日益严重,导致夹紧板、油箱壁等金属部件出现显著的涡流损耗问题。如果不加以控制,这些局部过热会威胁到设备的安全性。 为应对这一挑战,研究者们已探索了多种策略,包括使用低导磁率材料和电磁屏蔽技术来减少涡流效应的影响。本段落中,一个科研团队提出了一种基于计算机信息科学的方法评估电力变压器中的三维涡流场分布情况。这种方法满足了一系列物理方程,通过引入边界条件并求解加权残差方程式得到最终的磁场强度、电流密度及损耗值。 具体而言,该研究采用了时间谐波有限元法进行数值计算,在此过程中利用三角柱网格对整个区域进行了细致划分,并借助Team Problem 21-A模型验证了算法的有效性。实验结果表明,所提出的涡流场模拟技术能够准确预测实际测量到的磁场强度值。 此外,文章还展示了针对一台80,000kVA/220kV大型变压器使用时间谐波有限元法进行三维涡流场计算的具体步骤,并通过数值分析得出其内部金属结构件产生的损耗情况。这些数据为优化设计提供了宝贵的参考信息,有助于降低能耗并提升整体性能。 总而言之,精确的电磁场与涡流损耗评估能够有效预测和减少大型电力变压器工作过程中的能量损失问题,从而提高能源使用效率及设备的安全可靠性,在电力系统的规划、运营维护等方面发挥着重要作用。随着技术进步不断深入发展,此类研究也将继续拓展其应用范围并进一步完善相关理论体系。
  • 优质
    《开关电源的损耗计算》一文深入探讨了在设计和分析开关电源时如何精确评估各种形式的能量损失,包括导通损耗、开关损耗等,并提出优化策略以提高效率。 为了提高开关电源的效率,我们需要识别并粗略估算各种内部损耗。开关电源中的主要损耗可以分为四个部分:开关损耗、导通损耗、附加损耗以及电阻损耗。这些不同的损耗通常会在有损元件中同时出现,接下来我们将分别进行讨论。
  • 项目:利用MATLABMOSFET - MATLAB
    优质
    本项目运用MATLAB软件进行MOSFET器件在电力电子电路中的损耗分析与计算,为高效设计提供数据支持。 MOSFET的传导损耗及其温度依赖性。
  • :铜、铁机械
    优质
    本文探讨了电机运行过程中的主要能量损失形式,包括铜损、铁损以及机械损耗,并介绍了其计算方法。适合对电气工程感兴趣的读者阅读和学习。 电机损耗计算是评估电动机在运行过程中能量损失的重要方法。通过准确的损耗分析可以提高电机效率并延长其使用寿命。通常,电机损耗包括铜损、铁损、机械损耗及附加损耗等几个方面。进行这些计算时需要考虑诸如电流密度和磁场强度等因素的影响。 为了精确地完成电机损耗评估,工程师们会使用特定公式或计算机软件来帮助他们处理复杂的数学运算。此外,实验测试也是验证理论模型准确性的重要手段之一。通过综合分析理论与实践数据,可以更好地理解不同工作条件下电机性能的变化规律,并据此优化设计参数以达到最佳运行效果。 总之,在进行电机损耗计算时需要全面考虑各种影响因素并采用科学的方法来进行研究和评估。这不仅有助于提高电动机的效率和可靠性,还能为相关领域的技术创新提供有力支持。
  • T型三LCL滤波参数及半导体,含感参数设分析(Mathcad格式输出,便于调整)
    优质
    本研究探讨了T型三电平逆变器结合LCL滤波器的参数设定及其在不同条件下的半导体损耗,并详细设计了逆变电感,同时提供了一个基于Mathcad的计算工具以方便用户进行参数调整和分析。 T型3电平逆变器的LCL滤波器参数计算、半导体损耗分析以及逆变电感参数设计中的损耗计算均需采用Mathcad格式输出以方便后续调整。此外,还需支持Plecs软件进行损耗仿真,并基于此工具完成闭环仿真的工作,包括电压外环控制和电流内环调节,同时实现有源阻尼功能。
  • MATLAB
    优质
    本项目聚焦于利用MATLAB平台进行电力电子变压器的设计与仿真研究,旨在优化其性能和效率。通过深入分析及模拟实验,探索新型拓扑结构及其控制策略,推动电力系统技术革新与发展。 电力电子变压器(PET)是电力系统中的创新设备,它融合了传统变压器的功能与现代电力电子技术的优势。除了实现电能转换外,PET还能执行电压调节、频率调整及功率因数校正等复杂任务,在智能电网的发展中扮演着关键角色。 在MATLAB环境下开发PET模型能够方便地进行仿真研究和控制策略设计。作为一款强大的数学计算软件,MATLAB广泛应用于工程领域中的计算与数据分析,并提供Simulink工具箱来构建电气系统的动态模型,包括电力电子变换器、控制器及保护系统等组件。 对于交流电压升压的PET而言,其工作原理主要包括以下部分: 1. 整流器:将输入的交流电转换为直流电。 2. 逆变器:通过脉宽调制(PWM)技术控制输出电压波形和幅值,实现从直流到交流的转变。 3. 谐振电路:利用LC或RLC网络优化电压变换过程中的波形质量,并减少谐波含量。 4. 隔离变压器:用于电气隔离,提高系统的安全性。 5. 控制单元:设计适当的控制算法(如PID控制器、滑模控制等),确保系统能够准确地调节输出的电压和频率。 在MATLAB中构建PET模型时可遵循以下步骤: 1. 在Simulink环境中建立电路结构图,包括整流器、逆变器、谐振电路及隔离变压器。 2. 根据实际设备参数设置各部分电气特性(如电容值、电感量和开关频率)。 3. 设计控制策略并将其编写为MATLAB代码,并封装成Simulink子系统,以便与电路模型连接。 4. 定义仿真运行所需的各项参数以确保结果的准确性及稳定性。 5. 执行仿真实验观察输出电压、电流等变量的变化情况,评估PET的工作性能。 6. 通过波形图和频谱分析等方式深入解读实验数据,评价其升压效果与效率。 文件“first_apet.zip”可能包含初始模型文件、控制算法源代码及仿真配置文档。用户可以解压缩这些资源并在MATLAB中打开它们以进一步修改和完善设计思路或优化现有方案。 借助于MATLAB进行电力电子变压器的建模和仿真实验,工程师们能够在产品开发阶段提前发现潜在问题,并改进设计方案,从而大幅降低实际硬件测试频率及成本投入,提高研发效率。随着电力电子技术的进步,MATLAB在PET领域的应用价值也将日益凸显。