Advertisement

STM32F103C8T6 HAL库实现串口1和串口3的DMA通信

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文介绍了如何使用STM32F103C8T6微控制器及其HAL库来配置和实现串口1与串口3之间的DMA数据传输,提高通信效率。 网上关于HAL库DMA的示例大多比较简单,并且容易出现丢包问题,实用性较低。因此我编写了一个更实用的例子:这个Demo将串口1或串口3通过DMA接收到的数据再发送回相应的串口进行回显,也可以选择直接返回到各自的串口中。 定义了两个宏来配置功能: - `#define DEBUG_FLAG 1` 控制是否启用串口1的打印。 - `#define UART_BANDRATE 115200` 设置串口波特率。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • STM32F103C8T6 HAL13DMA
    优质
    本文介绍了如何使用STM32F103C8T6微控制器及其HAL库来配置和实现串口1与串口3之间的DMA数据传输,提高通信效率。 网上关于HAL库DMA的示例大多比较简单,并且容易出现丢包问题,实用性较低。因此我编写了一个更实用的例子:这个Demo将串口1或串口3通过DMA接收到的数据再发送回相应的串口进行回显,也可以选择直接返回到各自的串口中。 定义了两个宏来配置功能: - `#define DEBUG_FLAG 1` 控制是否启用串口1的打印。 - `#define UART_BANDRATE 115200` 设置串口波特率。
  • DMA1验.zip
    优质
    本资源为《DMA串口1通信实验》实验资料压缩包,内含相关代码、配置文件及说明文档,旨在帮助学习者掌握基于DMA技术的串口通信原理与实践操作。 STM32单片机可以通过DMA实现串口数据的接收和发送功能。这种方法能够提高通信效率,并减少CPU的负担。在配置过程中,需要正确设置DMA通道、传输模式以及中断处理等参数以确保数据传输的稳定性和可靠性。此外,在实际应用中还需要注意错误检测与纠正机制的设计,以便于及时发现并解决可能出现的数据传输问题。
  • DMA1测试验.zip
    优质
    本资源为“DMA串口1通信测试实验”项目文件,内含相关代码和配置文档,旨在帮助用户学习并掌握基于DMA技术的串口通信测试方法。 STM32单片机可以通过DMA实现串口数据的接收和发送功能。这种方法可以有效提高系统的实时性和处理效率。在使用DMA进行串口通信时,需要正确配置相关的寄存器,并编写相应的中断服务程序来处理接收到的数据或触发数据传输事件。
  • STM32F103C8T6
    优质
    本简介探讨了基于STM32F103C8T6微控制器的串口通信原理与实现方法,涵盖硬件配置及软件编程技巧。 STM32F103C8T6的串口通信通过USB转TTL连接实现:USB转TTL的TX端接至STM32的RX(PA10),而USB转TTL的RX端则与STM32的TX(PA9)相连。
  • STM32DMA
    优质
    本简介探讨了基于STM32微控制器的串行通讯技术,重点介绍如何利用DMA(直接内存访问)进行高效的数据传输。通过减少CPU干预,实现快速、低功耗的数据交换,适用于需要大量数据处理的应用场景。 STM32串口DMA(直接内存访问)通信是嵌入式开发中的高效数据传输方式,在处理大量数据时能显著提升系统性能。它允许数据在内存与外设之间直接传输,无需CPU介入,从而释放了宝贵的CPU资源以执行其他任务。 串口全称通用异步收发传输器(UART),是微处理器与外部设备进行串行通信的标准接口。STM32微控制器通常配备多个此类接口,如USART或UART,并支持多种波特率、数据位、停止位和奇偶校验设置,以适应不同的通信需求。 DMA是一种硬件机制,允许数据直接从外设传输到存储器或反之亦然而无需CPU参与每个单独的数据移动。在STM32中存在多个DMA通道,每一个可以被配置为服务于不同外设的请求。例如,一个通道用于处理串口发送任务,另一个则负责接收。 当使用串口DMA通信时,在数据到达后,DMA控制器将自动将其存储到预先设定好的内存缓冲区,并向CPU发出中断通知以告知其传输完成。类似地,在发送过程中,只需将待发的数据放入缓冲区中,之后由DMA在适当时间执行传送操作。这样可以实现异步的串口通信机制,即使数据量不确定也能保证稳定性和实时性。 透传(即透明传输)意味着原封不动地转发接收到的所有数据而不作任何修改或处理。在这种模式下,STM32充当一个透明桥设备,接收的数据会被直接发送出去,保持原始格式不变。这对于构建串口隧道、远程控制或者数据采集等应用非常有用。 实现STM32串口DMA通信通常需要以下步骤: 1. **配置串口**:设定工作模式、波特率及其它参数。 2. **配置DMA**:选择适当的通道,并设置源地址和目标地址(通常是寄存器与内存缓冲区),同时指定传输大小等信息。 3. **关联串口和DMA**:启用串口的DMA请求,将接收或发送事件绑定到相应的DMA通道上。 4. **设置中断**:配置完成时触发的中断以执行后续处理逻辑。 5. **启动DMA**:激活DMA操作,并在主程序中响应由此产生的各种中断。 实际应用还需考虑错误检测、数据完整性和溢出等问题。根据具体需求,可能需要采用多通道DMA或双缓冲技术等策略来优化性能和可靠性。 总的来说,STM32串口DMA通信通过DMA控制器实现高效的数据传输,在大量连续或者不确定量级的通信场景中尤为关键。掌握这项技术对于开发高效的嵌入式应用至关重要。
  • STM32 DMA HAL接收
    优质
    本简介探讨了如何利用STM32微控制器的DMA与HAL库实现高效的串口数据接收功能,简化编程复杂度并提高通信效率。 STM32串口接收DMA HAL是STM32微控制器中的一个高级硬件抽象层(HAL)实现方式,利用直接存储器访问技术(DMA),通过串行通信接口(UART)高效地处理数据的接收任务,在嵌入式系统设计中,串口通信是一种常见的设备间数据传输方法。而采用DMA技术可以显著提升传输速度,并且减少CPU的工作负担。 在STM32系列芯片上,通用异步收发传输器(UART)提供了一种全双工的数据发送与接收方式,适用于调试、传感器数据的交换等多种应用场景。不同型号的STM32微控制器配备有多个UART接口,具体数量取决于具体的硬件配置。 直接存储器访问(DMA)是现代微处理器中的一个重要特性,它允许外部设备独立于CPU直接进行内存操作。在串口通信中使用DMA技术时,在接收到数据后,无需CPU介入即可自动将这些信息传输至指定的缓冲区地址内,从而释放了宝贵的计算资源用于执行其他任务。 STM32 HAL库由STMicroelectronics公司提供并维护,旨在简化STM32微控制器上的软件开发流程。该库为开发者提供了与具体硬件架构无关的一系列API接口函数,使得串口接收DMA操作更加便捷和直观。通过调用这些预定义的HAL API函数,用户能够轻松地完成UART配置、设置DMA参数以及启动或停止数据接收等任务。 以下是使用STM32 HAL进行串口接收DMA操作的一些关键步骤: 1. **初始化串行通信接口**:利用`HAL_UART_Init()`这一API来设定相关参数如波特率、数据位数、停止位和校验方式。 2. **配置直接存储器访问(DMA)**:调用`HAL_DMA_Init()`函数以指定传输的源地址(通常是UART接收缓冲区)、目标内存位置及传输量等信息。 3. **建立串口与DMA之间的联系**:通过`HAL_UARTEx_ReceiveDMA()`来连接特定的DMA通道和UART接收功能,并设置相应的完成或错误回调机制。 4. **启动数据接收过程**:使用`HAL_UART_Receive_DMA()`函数开始执行DMA操作。一旦启动,系统将自动处理所有接收到的数据并在完成后触发指定的动作。 5. **中断事件管理**:在由上述步骤中定义的回调函数内检查接收状态,并根据需要进行进一步的操作或分析。 6. **控制数据流**:通过调用`HAL_UART_DMAPause()`, `HAL_UART_DMAResume()` 或者 `HAL_UART_DMAStop()`等命令来暂停、恢复或者停止DMA操作。 7. **错误处理机制**:利用提供的丰富异常管理功能,如超时、溢出和帧错等情况的检测与响应策略,确保程序稳定运行并合理应对各种故障场景。 在实践应用中,理解STM32串口接收DMA HAL的工作原理及其配置方法对于提高系统性能至关重要。此外,在多任务环境下还需要注意如何有效地管理和优化内存使用以及中断处理流程。
  • STM32F103C8T6同时启用1、23.zip
    优质
    本资源提供了关于如何在STM32F103C8T6微控制器上同时启用并配置三个UART接口(USART1, USART2, USART3)的详细教程与代码示例,适用于嵌入式开发人员进行多串口通信项目。 资源浏览查阅47次。STM32F103C8T6同时使用串口1、串口2和串口3的程序可以直接下载并使用,亲测有效。更多关于stm32f103c8t6uart3的相关资料可以在相关平台查找。
  • 【STM32】HAL异步及空闲中断接收(无DMA
    优质
    本教程介绍如何使用STM32 HAL库进行串口异步通信,并通过配置空闲中断来接收数据,整个过程不依赖于DMA技术。 使用STM32F103C8T6单片机及Keil MDK 5.32版本进行串口异步通信配置,开启收发功能,并实现阻塞式发送(类似printf的发送)以及非阻塞式接收数据的功能。通过PC13引脚控制LED灯的状态变化:当接收到数据时点亮LED灯以示指示。在程序初始化完成后启动接收空闲中断,在接收空闲回调函数中重新启用该中断,因为进入此回调函数前所有与接收相关的中断已经被关闭。
  • STM32 HAL与STM32CubeMXDMA配置
    优质
    本篇文章详细介绍了如何使用STM32 HAL库和STM32CubeMX工具进行串口DMA传输的配置,旨在帮助开发者更高效地完成硬件抽象层编程。 STM32 HAL库是由ST公司开发的一种高级抽象层库,为STM32微控制器提供了一套标准化、模块化的编程接口。该库简化了开发者的工作流程,并使代码编写更加高效且易于移植。借助于STM32Cube MX配置工具,我们可以迅速设置和初始化各种外设功能,包括串口通信和DMA(直接存储器访问)。 在嵌入式系统中,串口通信是设备间数据传输的重要手段之一。STM32的串口支持多种模式如UART(通用异步收发传输器)及USART(通用同步异步收发传输器)。HAL库提供了用于管理这些功能的一系列API接口,包括发送和接收数据、设置波特率、校验位以及停止位等。 DMA是一种硬件机制,在无需CPU干预的情况下直接在内存与外设之间进行数据传输。使用STM32中的串口DMA功能可以实现大容量的数据高速传输;当大量数据需要被传送时,CPU可以在执行其他任务的同时保持高效运行。此外,STM32的DMA控制器支持多个通道,并且每个通道都能够独立配置以服务不同的设备。 利用STM32Cube MX配置工具设定串口和DMA的过程如下: 1. 启动并选择目标STM32系列芯片,在项目中加载相应的配置。 2. 在外设设置界面找到需要使用的串口(如USART1),开启它,并根据需求调整波特率、数据位数、停止位及校验方式等参数。 3. 开启串口的DMA功能。在该设备的配置界面上勾选“启用DMA”,并选择适合的数据传输通道和服务模式(单次或循环)。 4. 配置DMA控制器,进入相关界面后选定与特定外设关联的通道,并设定数据传输方向、大小和优先级等参数。 5. 生成初始化代码。STM32Cube MX会自动生成包含串口及DMA初始设置的HAL库源码文件(包括`.c` 和 `.h` 文件)。 6. 编写应用程序,利用HAL提供的API来启动并控制串口与DMA的数据传输过程,例如通过调用 `HAL_UART_Transmit_DMA()` 或者 `HAL_UART_Receive_DMA()` 等函数。 在名为“USART_DMA_TEST1”的示例项目中通常会展示如何使用STM32 HAL库进行串口DMA数据传输。这类测试代码一般包括初始化步骤、启动和中断处理机制等,通过学习这些内容可以帮助开发者更好地理解并应用实际项目的相关功能。 综上所述,结合了灵活的串口通信与高效的DMA技术使得STM32在大数据量快速传输方面具有显著优势;而借助于STM32Cube MX工具,则能够方便地设定所需参数以实现高效的数据交换方案。