Advertisement

基于WENO-CU6格式的二维Riemann问题求解方法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种基于WENO-CU6格式的方法,用于解决流体力学中的二维Riemann问题,显著提高了计算精度和稳定性。 WENO-CU6格式二维Riemann问题求解器支持网格调节、CFL数调整及初始条件重新设置,并采用三阶时间格式。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • WENO-CU6Riemann
    优质
    本研究提出了一种基于WENO-CU6格式的方法,用于解决流体力学中的二维Riemann问题,显著提高了计算精度和稳定性。 WENO-CU6格式二维Riemann问题求解器支持网格调节、CFL数调整及初始条件重新设置,并采用三阶时间格式。
  • 有限差分WENO重构Euler(含WENOWENO-Z、WENO-ZN).zip
    优质
    本资料探讨了使用有限差分法结合不同WENO格式(包括WENO、WENO-Z及WENO-ZN)求解二维Euler方程的方法,提供详细的数值模拟和分析。 有限差分方法结合WENO重构求解二维Euler方程的研究包括了WENO、WENO-Z和WENO-ZN等多种格式的应用。这是我在大二期间完成的一份大学生课程设计的内容。
  • WENO 2D-Riemann.zip_WENO 2d_Riemann器_WENO_黎曼_weno
    优质
    本资源提供了一个基于WENO格式的二维黎曼问题求解器。适用于流体力学等领域的数值模拟,可有效处理激波和复杂流动现象。 二维黎曼问题在计算流体动力学领域具有重要地位,是研究复杂非线性现象下流体流动的基础工具。WENO(Weighted Essentially Non-Oscillatory)格式是一种高级的有限差分方法,专门用于解决数值稳定性、精度和振荡的问题,在处理尖峰及激波时表现出色。 标题中的“WENO 2D - Riemann.zip”指的是一个二维黎曼问题求解程序,该程序采用了五阶WENO算法。这种格式结合了高阶光滑区域的准确性与低阶非振荡性特性,特别适用于含有急剧变化或不连续性的流体流动情况。 在解决二维黎曼问题时,需要处理一组初值条件和边界条件,在二维空间中寻找时间演化下的流体状态。这要求选择一种合适的数值方法来近似解出这些问题,而WENO格式由于其特性成为优选方案之一。 Riemann求解器是计算流体力学中的一个重要工具,用于解决一维黎曼问题,并提供界面处的密度、速度和压力等基本变量的变化条件。对于二维情况,则需要考虑两个方向上的流量交互作用。采用五阶WENO格式能够更准确地捕捉到激波和其他不连续结构的存在,同时避免数值振荡的发生。 压缩文件“WENO 2D - Riemann”内可能包含实现二维黎曼求解器的源代码或相关数据文件,用户可以下载并研究这些内容以应用于自己的科研项目或工程问题中。五阶WENO格式的应用通常包括对网格进行差分、构造多项式近似、计算权重以及通过加权平均获得非振荡插值等步骤。 这个压缩包提供了一个使用五阶WENO算法解决二维黎曼问题的案例,对于理解和应用此类高级数值方法具有重要的参考价值。用户可以通过研究源代码学习如何实现WENO格式,并将其应用于实际流体力学问题中。验证过的求解器已经通过各种测试证明了其计算准确性和稳定性。
  • HLLC Riemann浅水
    优质
    本研究采用HLLC(Harten-Lax-van Leer-Contact)Riemann求解器来高效、准确地解决二维浅水方程,适用于模拟洪水、波浪等现象。 用MATLAB编写的基于有限体积法求解二维浅水方程边界数值通量的Riemann求解器(HLLC格式),可处理干河床问题,并适用于规则网格及不规则网格,只需提供边界左右两侧的水深和流速以及外法线矢量。
  • SOD激波管WENO
    优质
    本文探讨了一维SOD激波管问题,并提出了改进的WENO(加权本质非振荡)数值格式,以提高计算精度和稳定性。 一维Sod激波管问题的WENO格式是一种数值方法,用于求解流体力学中的守恒律方程。该方法利用加权本质非振荡(Weighted Essentially Non-Oscillatory, WENO)技术来提高计算精度和稳定性,在处理含有间断性的流动现象时尤其有效。
  • 七阶WENO欧拉
    优质
    本项目开发了一种基于七阶WENO(加权本质非振荡)技术的高效数值方法,专门用于求解二维欧拉方程。此求解器能够准确模拟复杂流体动力学现象,适用于航空航天等领域的研究与工程实践。 7阶WENO的双马赫反射求解器使用Fortran编写。该程序允许自由更改网格规模和CFL数,并且数据输出为dat格式,可以直接用tecplot打开。
  • WENOZ+欧拉程双马赫数反射
    优质
    本研究采用WENOZ+格式对二维欧拉方程中的双马赫数反射现象进行数值模拟,探讨激波与流体相互作用机制。 WENOZ+格式求解二维欧拉方程双马赫数反射问题的算例可以调整网格和CFL参数。
  • EulerFortran实现:WENOWENO-Z和WENO-ZN应用
    优质
    本文介绍了使用Fortran编程语言实现的一维Euler方程求解方法,并详细探讨了WENO、WENO-Z及WENO-ZN格式在数值模拟中的应用。 Fortran程序使用WENO格式求解一维Euler方程,包括WENO、WENO-Z、WENO-ZN等多种格式。在运行前,请通过ini.txt文件设置计算条件。该程序涵盖特征重构,并提供了5阶和7阶精度的算例,如黎曼问题、Shu-Osher问题、Titarev–Toro问题以及Blasting-Wave通量分裂等。此外,它还支持局部LF分裂、全局LF分裂、SW分裂及vanLeer分裂等多种WENO重构方法,包括WENO-JS, WENO-z和WENO-zn格式。
  • 非稳态导热数值
    优质
    本文探讨了针对二维非稳态导热现象的有效数值模拟技术。通过分析不同算法的优劣,提出了一种高效的求解策略,为该领域的研究提供了新的视角和工具。 ### 一种二维非稳态导热问题的数值解法 #### 摘要与背景介绍 本段落探讨了一种二维非稳态导热问题的数值解法,并将其作为计算机数值分析的一个参考案例。研究主要关注如何在考虑第三类边界条件的基础上,通过交替方向隐式法(ADI)来构建适用于不同类型边界条件的二维非稳态导热问题的差分方程。这种方法不仅简化了计算过程,还提高了计算方法的通用性。 #### 能量方程与定解条件 在二维直角坐标系中,对于物性参数为常数且无内热源的非稳态导热问题,能量守恒方程可以表示为: \[ \frac{\partial T}{\partial t} = \alpha \left( \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) \] 其中 \(T\) 代表温度(℃),\(α\) 是导温系数 (\(m^2/s)\),\(t\) 表示时间 (s)。 对于该问题,设定以下三种边界条件: 1. **第一类边界条件**:边界温度已知,即 \(T(x_b,y_b,t)=T_b\)。 2. **第二类边界条件**:边界面上的热流密度已知,即 \(-k\frac{\partial T}{\partial n} = q_b\)。 3. **第三类边界条件**:边界面上的对流换热系数 \(h\) 与流体温度 \(T_{∞}\) 已知,即 \(-k\frac{\partial T}{\partial n} = h(T-T_∞)\)。 #### 数值计算方法 为了求解上述问题,首先需要利用控制容积法来导出内部节点、边界节点以及角点的有限差分方程,使它们的形式适合于ADI法求解。接下来使用追赶法(或称托马斯算法)来求解这些方程组。 1. **内部节点的差分方程**: 对于内部节点,差分方程可以表示为: \[ \frac{T_{i,j}^{n+1}-T_{i,j}^n}{Δt} = α\left( \frac{T_{i+1,j}^n - 2T_{i,j}^n + T_{i-1,j}^n}{(Δx)^2} + \frac{T_{i,j+1}^n - 2T_{i,j}^n + T_{i,j-1}^n}{(Δy)^2}\right) \] 2. **边界节点的差分方程**: 当求解包含上述三种边界条件的问题时,为了得到适用于所有类型的边界条件的通用离散化方程,需要将第一类和第二类边界条件转换为当量第三类边界条件。 - **第一类边界条件的当量第三类边界条件**: \[ h(T_b - T) = h(T_b - T_∞) \] - **第二类边界条件的当量第三类边界条件**: \[ h(T - T_∞) = q_b \] 3. **角点的差分方程**: 对于角点,离散化方程也需要根据边界条件进行调整。 4. **交替方向隐式法的应用**: ADI法是一种高效的方法,它将空间导数分解为两个一维问题,每个问题沿着一个坐标方向进行求解。这样做的好处在于可以显著减少计算量,在处理大规模系统时尤其明显。 5. **求解步骤**: - 利用初始条件,逐行求解由每行节点方程组形成的三对角线方程组。 - 利用前一步骤的结果,逐列求解由每列节点方程组形成的三对角线方程组。 - 如果计算的时间步达到给定值或满足收敛条件,则停止计算;否则重复上述步骤直到满足终止条件。 #### 计算机程序与计算结果 本段落进一步提到开发相应的计算机程序来实现上述方法,并给出了具体的计算结果,验证了该方法的有效性和准确性。这种数值解法不仅可以用于解决二维非稳态导热问题,还可以扩展到更复杂的物理场景中,例如涉及多相流动、化学反应等问题。 #### 结论 本段落提出的方法不仅提供了一种有效解决二维非稳态导热问题的手段,而且通过将不同的边界条件统一处理,大大提高了计算方法的通用性和灵活性。此外,这种方法还具有较高的计算效率,适用于工程实际中的复杂传热问题。
  • 双曲差分加权隐
    优质
    本研究探讨了一种针对双曲型偏微分方程的新型加权隐式差分算法,有效提升数值解的稳定性和精度。 双曲问题差分格式的加权隐式格式求解方法通过利用边界条件和初值条件来计算第一级解,并且根据递推方程进一步求得任意级别的解。文档中包含思路分析以及结果图,建议配合提供的MATLAB代码一起阅读以更好地理解整个过程。