Advertisement

基于速度和加速度限制的移动机器人时间最优控制

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了在给定速度和加速度约束下,如何实现移动机器人的路径规划与时间优化问题,旨在开发出一种高效的时间最优控制策略。 本段落提出了一种满足机器人运动系统速度和加速度约束的时间最优控制方法。首先利用最优条件构建哈密尔顿函数,并依据极小值原理求解时间最优控制问题;其次,通过相轨迹分析证明了符合这些限制的最佳控制律形式;再次,计算出最佳时间后将此控制规则转化为以最短时间为终点的燃料优化控制法则;最后,在RoboCup小型足球机器人上进行实验对比,验证该方法在规划与实际应用中的一致性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究探讨了在给定速度和加速度约束下,如何实现移动机器人的路径规划与时间优化问题,旨在开发出一种高效的时间最优控制策略。 本段落提出了一种满足机器人运动系统速度和加速度约束的时间最优控制方法。首先利用最优条件构建哈密尔顿函数,并依据极小值原理求解时间最优控制问题;其次,通过相轨迹分析证明了符合这些限制的最佳控制律形式;再次,计算出最佳时间后将此控制规则转化为以最短时间为终点的燃料优化控制法则;最后,在RoboCup小型足球机器人上进行实验对比,验证该方法在规划与实际应用中的一致性。
  • 路径计算:路径-MATLAB实现
    优质
    本文介绍了一种基于MATLAB实现的方法,用于在考虑速度和加速度约束条件下寻找两点间最短时间路径的优化算法。 此代码输出两个状态(位置和速度)之间的最短时间轨迹的最多三个段的系数,并受制于速度和加速度约束条件。在某些情况下,产生的轨迹将是一个 bang-bang 轨迹,包含最多两个二次段,在每个方向上以最大加速度运行。如果两个状态间的距离较大,则需要一个中间线性段来实现最大速度移动。该代码还提供了完整轨迹的可选图,并输出了计算任意时刻状态所需的系数和切换时间。
  • 轮式方法
    优质
    本研究探讨了针对轮式机器人的速度优化控制策略,通过改进算法实现更高效、稳定的运动控制,提高机器人在不同环境下的适应性和性能。 轮式机器人速度优化控制方法研究了如何提高轮式机器人的运行效率和性能的方法。
  • 采集
    优质
    本项目专注于开发高精度传感器技术,用于实时采集物体的位移、速度及加速度数据,旨在为运动分析与控制提供精确的数据支持。 利用LabVIEW实现对振动信号的实时监测,并包含微分环节以计算振动位移、速度及加速度。
  • 步进电平滑
    优质
    本文探讨了步进电机在启动时实现平滑加速与减速的方法,并介绍了如何有效控制其加速度,以提高运行效率和稳定性。 各位同僚请注意:你们想要的平滑加减速用步进电机是无法实现的,这不是因为我的算法有问题,而是缺少硬件支持。我尝试过通过平滑改变加加速度、加速度以及速度来解决这个问题,但即使这样,在水杯上做实验时依然会出现震荡现象。这是因为有一种技术叫做振动抑制,需要硬件驱动器和软件配合才能有效实施。 不过,我已经在一般应用中实现了足够的效果,并且可以通过调整代码中的加速脉冲数、最高最低速度等参数来适配你们的运动系统。
  • GPS位预测方法
    优质
    本研究提出了一种结合加速度数据与GPS位移信息进行速度预测的新方法,旨在提高移动对象速度估算精度。通过优化算法融合传感器数据,有效应对单一传感器局限性,适用于智能交通、运动分析等领域。 使用C语言可以实现从加速度传感器读取加速度数据,并通过GPS定位计算位移,进而预测当前时刻的速度。
  • 单片、位测量技术
    优质
    本项目介绍了一种用于发动机性能监测的技术,采用单片机实现对发动机振动的速度、位移和加速度参数进行精确测量。通过分析这些数据,能够有效评估发动机的工作状态并预测潜在故障,从而确保设备的安全运行和延长使用寿命。该技术具有成本效益高、操作简便等优点,在工业领域有广泛应用前景。 ### 基于单片机的发动机振动速度、位移和加速度测量方法 #### 摘要 本段落探讨了一种新型的发动机振动参数测量方案,该方案利用单片机作为核心处理器,能够准确地测量发动机振动的速度、位移及加速度等关键参数。通过对振动传感器信号进行预处理(包括高通和低通滤波),并将处理后的信号转换为电压信号,再通过模数转换变为频率信号,最终由单片机进行精确计算和结果显示。这种方法不仅有效降低了环境因素对测量结果的影响,还提高了整体测量精度。 #### 关键词 - 单片机 - 发动机振动速度 - 振动位移 - 振动加速度 #### 1. 测量原理分析 **振动速度信号的处理**: 发动机振动速度传感器输出的频率信号与振动速度成正比。因此,可以通过测量传感器的输出频率来获得振动速度。然而,这些信号中通常会混杂有高频和低频噪声,这会影响测量精度。为此,在信号进入单片机之前,需要先对其进行放大,并进行高通和低通滤波处理。 **振动位移与加速度信号的获取**: 振动速度、位移与加速度之间存在确定的关系。通过对振动速度信号进行积分处理可以得到振动位移;通过微分则可获得振动加速度。这些信号同样需要适当的滤波以提高测量精度。 **信号转换与处理**: 通过模拟开关和幅值元件将振动参数的频率信号转化为0-5V电压,随后利用模数转换器(ADC)芯片将该电压转为对应的数字频率信号,再送入单片机进行计数处理。脉冲频率由单片机内部计时器根据晶振提供的时间基准完成。 #### 2. 系统设计特点 **数字滤波技术**: 设计中采用了先进的数字滤波技术以进一步提高测量精度和稳定性,确保信号中的随机噪声被有效消除,从而保证了结果的可靠性。 **自校准功能**: 当系统选择开关置于“自校”位置时,通过输入标准频率进行对比测试来评估当前输出值是否需要调整, 以此保持系统的准确性。 **灵敏度系数调节**: 系统还具备根据实际需求灵活调整其敏感程度的功能。每次启动后,这些参数将自动加载到内存中以确保正常运行。 #### 结论 本段落介绍的基于单片机的发动机振动速度、位移和加速度测量方法,不仅简化了操作流程且提高了精度,并增强了系统的稳定性和适应性。通过合理的设计和技术手段, 该方案能够有效满足现代航空发动机监测的需求,对于提升整体性能评估具有重要意义。
  • 测量方法
    优质
    本文章主要介绍物理学中常用的位移、速度及加速度的测量技术与原理。通过实验探究不同情境下的物理量测定方式,帮助读者深入理解相关概念及其实际应用价值。 位移、速度及加速度是描述物体运动状态的重要参数,在工程、科研以及日常生活中有着广泛的应用。测量这些参数通常会使用各种类型的传感器和技术。 首先来看位移的测量方法,它是指物体位置的变化,分为线性位移和角位移两种类型。常见的位移测量技术包括机械式、电气式和光电式等几种方式。例如,在简单的场合中可以采用浮子式的仪表来感知液面变化;而火炮自动机使用的电感传感器则能够在动态范围内提供准确的读数,但可能会对被测物体产生影响。相比之下,光电位移测量技术因其非接触特性、高频率响应和精度成为众多应用中的首选。 在电气式位移测量中,电感式系统是一种常见的方法,其工作原理基于变磁阻效应。该类系统的构成包括线圈、铁芯以及衔铁等部件;当衔铁发生移动时会改变气隙厚度进而影响到线圈的电感值变化,并以此来反映位移信息的变化。这类传感器的优点在于结构简单且无活动接触点,具有高灵敏度和分辨率等特点。 速度定义为单位时间内物体位置的变化量,而加速度则是描述速度随时间变化的程度;它们都可以通过连续监测位移并进行相应的数学运算得到准确的结果。在高速或高频运动的场景下,则需要配合使用高性能传感器及数据采集系统来完成精确测量任务。 除了选择合适的传感器外,在建立完整的测量系统时还需考虑信号调理电路的设计,以确保传感器输出信号能够被正确处理和传输至显示或者记录设备中;同时系统的标定也是保证测量准确性的重要环节之一。通过对各种误差来源进行校准可以提高最终数据的可靠性与可信度。 综上所述,针对位移、速度及加速度等参数的测量涉及多种技术和方法,并且每种技术都有自己特定的应用场景和优势所在。因此,在实际操作过程中应根据具体需求以及环境条件综合考量以上因素来做出最佳选择。
  • 航向AIS数据压缩算法(率--航向)
    优质
    本文提出了一种新颖的数据压缩方法,专门针对AIS系统中的时间、速度及航向信息进行优化。通过分析船舶运动特性,在确保导航安全的前提下显著减少数据量,提升传输效率与存储空间利用率。 本代码与我发布的文章相关。代码语言:Python;开发环境:PyCharm;实验数据:船舶AIS数据。
  • LabVIEW直流电
    优质
    本项目基于LabVIEW平台开发了一套直流电机速度控制系统,实现了对电机转速的精准调节与实时监控,具有良好的稳定性和响应性。 都是关于gas的内容就不给你提供空间来分享黄瓜案例和其他工具了。