Advertisement

基于工作面供液系统的液压支架协同自适应控制模型设计-论文

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文提出了一种针对工作面供液系统优化的液压支架协同自适应控制模型设计方案,旨在提高煤炭开采效率和安全性。 液压支架跟机与乳化液泵供液系统的协同控制是综采设备智能化的关键环节。鉴于在工作面作业过程中,多台液压支架顺序动作对乳化液泵的流量需求具有复杂性和实时性特点,我们设计了一套能够实现两者协调自适应调控的工作面供液系统模型。该方案以确保向液压支架稳定供应液体为原则,并结合了多泵与变频技术的特点,在此基础上提出了一个优化的控制逻辑策略。 为了进一步提升系统的智能化水平,本研究采用了机制主义人工智能理论和多响应优化满意度函数法来设计协同自适应控制系统及其生成方式。通过MATLAB与AMESim软件进行联合仿真测试后,结果证明该模型能够有效应对各种工作面作业情况,并达到了预期目标。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • -
    优质
    本文提出了一种针对工作面供液系统优化的液压支架协同自适应控制模型设计方案,旨在提高煤炭开采效率和安全性。 液压支架跟机与乳化液泵供液系统的协同控制是综采设备智能化的关键环节。鉴于在工作面作业过程中,多台液压支架顺序动作对乳化液泵的流量需求具有复杂性和实时性特点,我们设计了一套能够实现两者协调自适应调控的工作面供液系统模型。该方案以确保向液压支架稳定供应液体为原则,并结合了多泵与变频技术的特点,在此基础上提出了一个优化的控制逻辑策略。 为了进一步提升系统的智能化水平,本研究采用了机制主义人工智能理论和多响应优化满意度函数法来设计协同自适应控制系统及其生成方式。通过MATLAB与AMESim软件进行联合仿真测试后,结果证明该模型能够有效应对各种工作面作业情况,并达到了预期目标。
  • STM32
    优质
    本项目旨在设计一种基于STM32微控制器的液压支架电液控制系统,实现煤矿井下液压支架的自动化控制与管理,提高生产效率和安全性。 本段落设计了一种以STM32F105处理器为核心,并采用双CAN总线通信方式的电液控制器。详细介绍了各模块电路的设计以及嵌入式程序开发过程。最终的联机实验结果表明,该系统的结构合理且基本实现了预期目标。
  • EHA_PID.rar_pid _MATLABPID__电
    优质
    本资源为MATLAB环境下针对液压系统的PID控制设计,包括详细的液压模型与电液控制系统分析,适用于研究和工程应用。 电液静液压作动器(EHA)的模型。
  • 优质
    本项目专注于小型液压机的液压系统设计,旨在优化其性能与效率。通过选择合适的泵、阀和执行器等元件,以实现精确控制压力、速度及方向,满足各类加工需求。 现代机械技术、液压系统设计以及小型液压机的液压传动是当前研究的重要领域。
  • 无线传感器网络力监
    优质
    本项目旨在设计一种利用无线传感器网络技术监测煤矿液压支架的压力状况的监控系统。该系统能够实时采集、传输和分析数据,有效预防安全事故,提高矿井作业的安全性和效率。 为解决有线液压支架压力监测系统中存在的布线复杂及数据传输可靠性不足等问题,设计了一种基于无线传感器网络的液压支架压力监测方案。该方案采用CC2530芯片作为核心处理器件,通过数据采集节点收集液压支架的压力值,并由路由节点负责接收这些信息并通过多跳方式传递至Sink节点;随后,Sink节点利用CAN总线将获取到的数据上传至上位机系统中,从而实现对整个无线传感器网络覆盖区域内所有液压支架压力状况的实时监测。测试结果表明,该方案能够准确并及时地监控井下液压支架的压力变化情况。
  • PLC油泵动化
    优质
    本项目旨在设计并实现一种基于PLC的油泵液压站自动化控制方案,以提高系统的运行效率与稳定性。通过集成传感器和执行器,实现了对油泵的工作状态进行实时监控与智能调控,广泛应用于工业制造领域。 本段落介绍了油泵自动控制技术,并详细阐述了利用可编程控制器(PLC)对液压站油泵进行自动控制的基本方法。文章分析了一个完整生产线中PLC油泵软硬件系统的构成,重点讨论了在液压站油泵自动控制系统和设计中的应用。
  • 原理图
    优质
    本项目专注于小型液压机液压系统的设计与优化,通过绘制详细的原理图来指导实际应用,旨在提升设备性能和操作效率。 ### 小型液压机液压系统设计原理图解析 #### 一、概述 液压系统作为现代机械设备中的关键组成部分,在工业生产中发挥着不可替代的作用。针对小型液压机的设计,本段落将围绕“小型液压机液压系统设计原理图”展开讨论,重点介绍系统的整体设计流程与关键技术点,包括工况分析、速度图和负载图的绘制、液压原理图的拟定以及元件的选择等。 #### 二、工况分析 工况分析是液压系统设计的第一步,对于整个系统的设计至关重要。通过对工作条件进行细致分析,可以确定液压系统的负载特性、压力范围及温度变化等因素。这些因素直接影响到后续步骤如泵和管路尺寸的选择。例如,在小型液压机的应用场景中,需要考虑的最大工作压力、最大速度以及循环时间等参数。 #### 三、速度图与负载图的绘制 在设计过程中,绘制速度图和负载图是非常重要的环节。通过它们可以详细了解系统的工作性能: - **速度图**:展示各执行机构的速度随时间的变化情况。 - **负载图**:反映不同阶段所承受的负荷大小。 这些图表有助于合理安排工作顺序与时间,并确保系统的平稳运行效率。 #### 四、液压原理图的拟定 设计液压系统时,绘制详细的液压原理图是关键。它不仅展示了整个系统结构,还能清晰表示各部件间的连接关系: - **元件标识**:所有组件均需有明确标示。 - **流动方向**:清楚标明油液的流向。 - **控制回路**:详细描绘出各个阀门的位置及其工作逻辑。 #### 五、元件选择 液压系统的性能和可靠性很大程度上取决于所选元件的质量。在进行元件选取时,需要综合考虑以下几点: - **泵的选择**:根据系统的工作压力与流量需求来选定合适的类型及型号。 - **缸的选用**:基于负载大小、行程长度以及工作频率等因素决定。 - **阀门选择**:依据系统的具体要求挑选适合类型的阀件,例如单向阀和溢流阀等。 - **管道材料与规格的选择**:根据系统压力等级和流量需求合理配置管路。 #### 六、总结 小型液压机的液压系统设计是一项复杂且细致的工作。通过全面分析工况条件,并结合速度图及负载图的设计,可以拟定出合理的液压原理图并进行精确元件选择,从而确保系统的高效稳定运行。此外,在维护保养和安全措施方面也需要特别关注,以延长设备使用寿命并保障操作人员的安全。 希望本段落对读者在理解和设计小型液压机的液压系统时有所帮助。
  • PLC升降机.doc
    优质
    本文档探讨了采用可编程逻辑控制器(PLC)技术对液压施工升降机进行控制系统的优化设计,旨在提高设备的安全性、可靠性和操作效率。 本段落主要探讨基于PLC的液压施工升降机控制系统的设计方案,旨在提升设备自动控制水平及安全性。该系统由两部分构成:一是采用三菱FX2N-48MR-001 PLC模拟量输出模块构建的PLC控制系统,负责处理所有输入和输出信号以及触摸屏通信;二是通过昆仑通态TPC1061Ti触摸屏实现的人机交互界面设计。 液压施工升降机的工作原理基于液压系统的运作机制,借助于液压泵、马达及缸体来驱动设备运行。本段落的设计方案充分考虑了安全性和可靠性要求,并且在控制系统硬件和软件层面进行了详细规划与优化,以确保整体性能的稳定可靠。 PLC控制部分利用三菱FX2N-48MR-001模块实现了对各类信号的有效管理以及与触摸屏间的通信任务;同时,监控界面则借助于MCGS软件工具来完成楼层选择参数设定及运行状态监测等功能。这些设计均围绕着提升系统稳定性和安全性展开。 此外,在软件层面还特别注重逻辑控制和速度调节的设计细节,以确保设备能够平稳高效地运作。与此同时,为增强系统的抗干扰能力,从电源引入、输出端防护、安装布线到接地措施等多方面进行了周密考量与实施。 综上所述,基于PLC技术的液压施工升降机控制系统设计是提高此类机械自动化程度和安全保障的有效途径之一,并能满足高层乃至超高层建筑项目的需求。