Advertisement

三维重建领域深度学习代表性论文及源码解析与译文整理下载

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供三维重建领域深度学习经典论文及其代码解析和翻译,便于研究者下载学习,助力相关技术的理解与应用。 深度学习三维重建笔记总结了MVSNet系列顶刊:MVSNet(CVPR-2018)是首个基于深度学习的多视角立体视觉模型,引入了3D成本体;RMVSNet(CVPR 2019)使用GRU替代3D CNN以减少显存消耗;PointMVSNet和P-MVSNet均在ICCV 2019上发表,前者采用点云处理方法,后者则进行局部优化。此外还有MVSCRF、Cascade MVSNet(CVPR 2020)、CVP-MVSNet(CVPR 2020)等模型,其中Cascade MVSNet利用特征金字塔实现高精度重建;Fast-MVSNet和UCSNet也在CVPR 2020上亮相,前者强调速度优化,后者则引入了新的网络结构。ICCV 2019的CIDER以及ECCV 2020的PVAMVSNet、D2HC-RMVSNet等模型进一步丰富了这一领域;Vis-MVSNet(BMVC 2020)关注于视觉质量提升,AA-RMVSNet和EPP-MVSNet在ICCV 2021上分别从不同角度对RMVSN进行改进。PatchMatchNet则是在CVPR 2021上的最新进展之一。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本资源提供三维重建领域深度学习经典论文及其代码解析和翻译,便于研究者下载学习,助力相关技术的理解与应用。 深度学习三维重建笔记总结了MVSNet系列顶刊:MVSNet(CVPR-2018)是首个基于深度学习的多视角立体视觉模型,引入了3D成本体;RMVSNet(CVPR 2019)使用GRU替代3D CNN以减少显存消耗;PointMVSNet和P-MVSNet均在ICCV 2019上发表,前者采用点云处理方法,后者则进行局部优化。此外还有MVSCRF、Cascade MVSNet(CVPR 2020)、CVP-MVSNet(CVPR 2020)等模型,其中Cascade MVSNet利用特征金字塔实现高精度重建;Fast-MVSNet和UCSNet也在CVPR 2020上亮相,前者强调速度优化,后者则引入了新的网络结构。ICCV 2019的CIDER以及ECCV 2020的PVAMVSNet、D2HC-RMVSNet等模型进一步丰富了这一领域;Vis-MVSNet(BMVC 2020)关注于视觉质量提升,AA-RMVSNet和EPP-MVSNet在ICCV 2021上分别从不同角度对RMVSN进行改进。PatchMatchNet则是在CVPR 2021上的最新进展之一。
  • CVP-MVSNet(CVPR 2020)(含、原
    优质
    CVP-MVSNet是一款基于深度学习进行多视角立体视觉的三维重建工具,本文介绍了该方法在CVPR 2020上的研究成果,并提供源代码和论文及其翻译版本下载。 深度学习三维重建 CVP-MVSNet——CVPR-2020(源码、原文、译文)提供了关于CVP-MVSNet的详细资料,包括其代码实现以及相关论文及其翻译版本。这一研究在计算机视觉顶级会议CVPR 2020上进行了展示,并且包含了一系列用于理解该技术细节和应用方法的重要资源。
  • 关于M3VSNet的研究
    优质
    本文介绍了一种名为M3VSNet的新模型,专门用于基于深度学习的三维场景重建。通过创新性的网络架构设计,该方法在多个数据集上取得了显著的效果,为计算机视觉领域提供了新的解决方案。 在计算机视觉和三维图形学领域,多视图立体视觉(MVS)技术致力于从多张二维图像重建出密集的三维点云数据,在增强现实、虚拟现实以及机器人技术等众多应用中发挥着重要作用。随着深度学习的进步,基于监督学习的方法显著提升了性能表现,然而此类方法面临的一个主要挑战是难以获取用于训练的真实深度图,并且这些真实深度图通常局限于特定类型的场景。 为解决上述问题,华中科技大学、北京大学和旷视科技的研究人员提出了一种创新的无监督多指标多视图立体视觉网络(M3VSNet)。该技术的关键在于能够在没有外部指导的情况下进行密集点云重建。为了增强重建结果的质量,研究人员设计了一个新颖的损失函数,结合了像素级与特征级的损失计算方式,从不同的匹配关系视角学习内在约束条件,并引入法线深度一致性来提高估计深度图的准确性和连续性。 通过在DTU数据集上的测试和先前监督方法MVSNet进行对比实验,证明了M3VSNet的有效性。结果显示,它确立了当前最优秀的无监督重建技术地位,在性能上与之前基于监督学习的方法相当,并且展示了良好的泛化能力。此外,其代码已公开发布于GitHub平台以供其他研究者使用及进一步探索。 除了创新的无监督框架外,M3VSNet还通过引入多指标损失函数设计来提高整体表现力和鲁棒性,在不同场景类型中的应用显示出灵活性与准确性。这项研究成果不仅提升了三维重建领域的理论和技术水平,也为未来相关技术的发展提供了积极推动力。
  • SurfaceNet: 基于+原)- ICCV 2017
    优质
    本文介绍了SurfaceNet模型,在ICCV 2017上发表。该模型基于深度学习技术,用于从单张图像中生成高质量的3D物体表面重建结果,提供源代码和原始论文下载。 深度学习三维重建 SurfaceNet——ICCV-2017(源码+原文)介绍了在ICCV 2017会议上发表的关于使用SurfaceNet进行深度学习三维重建的研究,包括相关代码和原始论文的内容。
  • 方法 PatchMatchNet-CVPR-2021(含、原详细注释和
    优质
    PatchMatchNet是一种用于三维场景重建的深度学习算法,该论文在CVPR 2021上发表,并提供了代码、原文以及详细的注释和中文翻译。 深度学习三维重建 PatchMatchNet——CVPR-2021(源码、原文、注释、译文、批注)该研究关注于利用深度学习技术进行三维重建,具体介绍了一种名为PatchMatchNet的方法,并在CVPR 2021会议上进行了展示。相关的资源包括源代码、原始论文以及详细的解释和翻译等。
  • 优质
    本专栏专注于解析深度学习领域的前沿论文,涵盖神经网络架构、自然语言处理、计算机视觉等多个方向,旨在帮助读者深入理解相关技术原理及应用。 本课程主要以时间线为基础,详细讲解深度学习领域最重要的论文,例如ReLU、Dropout、AlexNet、VGGNet、Batch Normalization、ResNet、Inception系列、ResNeXt以及SENet和GPT-3等。
  • MVSNet在ECCV 2018的(含、PyTorch版本、原详细注释和
    优质
    简介:本文介绍了MVSNet,一种用于深度学习三维重建的方法,并提供包含源代码、PyTorch版本以及原文详细注释和译文的资源包。该研究在2018年欧洲计算机视觉会议(ECCV)上发表。 深度学习三维重建 MVSNet——ECCV-2018 提供了源码、pytorch版实现、原始论文以及译文与批注资源。
  • 基于Deep Image Matting-2017-CVPR(含和原
    优质
    本文为CVPR 2017论文,提出了一种基于深度学习的三维重建方法及图像抠图算法Deep Image Matting,并提供了代码。 深度学习三维重建 Deep Image Matting--2017-CVPR(源码、原文)深度学习三维重建技术在2017年的CVPR会议上通过Deep Image Matting得到了深入的研究与发展,该研究提供了相关的源代码和原始论文供学术界及工业界参考。
  • 实践——资
    优质
    本资源集合涵盖了深度学习领域的理论知识和实践经验,包括教程、论文及代码示例等,旨在帮助学习者全面掌握深度学习的核心技术。 深度学习是人工智能领域的重要分支之一,它通过模拟人脑神经网络的工作原理使计算机能够从大量数据中自动提取特征并进行预测。“深度学习理论与实践”课程为初学者提供了宝贵的实践机会,鼓励学员通过实际运行代码来加深理解。 以下是一些关键知识点的详细介绍: 1. **神经网络基础**:深度学习的核心是构建由多个层次组成的神经网络。每个层次包含若干个被称为“神经元”的节点。这些层包括输入层、隐藏层和输出层,其中隐藏层负责模型的学习过程。 2. **前向传播与反向传播**:在训练过程中,通过前向传播计算预测结果,并使用反向传播算法来调整权重以减小误差并提高性能。 3. **损失函数**:衡量模型预测值与实际值之间的差异。常用的损失函数包括均方差(MSE)和交叉熵损失等。对于分类问题而言,交叉熵是更常见的选择。 4. **优化器**:如梯度下降、随机梯度下降(SGD)、动量(Momentum)以及Adam等方法用于调整权重更新的速度与方向以实现高效收敛。 5. **激活函数**:非线性变换功能包括Sigmoid,tanh, ReLU(修正线性单元)和LeakyReLU等,这些赋予神经网络处理复杂问题的能力。 6. **卷积神经网络(CNN)**:CNN在图像识别任务中表现突出。通过利用卷积层及池化操作提取特征,并且由于权值共享特性减少了参数数量从而提高了训练效率。 7. **循环神经网络(RNN)与LSTM**:RNN适用于处理序列数据如自然语言,但其存在梯度消失或爆炸问题;为解决此问题提出的LSTM(长短期记忆)模型能够更好地捕捉长期依赖关系。 8. **深度信念网络(DBN)和自编码器(AE)**:无监督学习方法DBN用于预训练权重而AE则通过重构输入数据来发现低维表示。 9. **生成对抗网络(GAN)**:由两个部分组成,即生成器与判别器。GAN利用博弈论原理进行训练,并能够创建逼真的新样本。 10. **模型评估和调优**:包括交叉验证、早停法以及网格搜索等技术用于选择最佳的超参数组合。 通过这些实例代码的学习实践,你将更加深入地理解深度学习的操作机制并提高自己的技能水平。同时还有关于数据预处理、模型搭建及训练等方面的详细文档可供参考。
  • 关于多自适应的综述.pdf
    优质
    本文为一篇关于多源领域自适应的深度学习综述性论文,全面总结了该领域的最新进展、核心方法及挑战,并展望未来发展方向。 由于获取足够的大规模标记数据来充分训练深度神经网络常常是困难且昂贵的,因此在深度学习领域内研究者们越来越重视自适应技术的发展,特别是多源领域自适应(Multi-source Domain Adaptation, MDA)技术的应用。这项技术能够有效地将来自多个不同分布的数据集的知识转移到未标注或标记稀疏的目标域中。 随着深度神经网络在计算机视觉和自然语言处理等领域的显著成功,获取大量标签数据的成本变得越来越高昂且耗时长,有时甚至不可行。特别是在细粒度识别领域中,只有专家才能提供可靠的标签信息。这就导致了从一个有标注的源域向未标记或稀疏标记的目标域迁移学习的需求。 在这种背景下,领域自适应(Domain Adaptation, DA)技术应运而生,旨在最小化不同数据集之间的分布差异对模型性能的影响。多源领域自适应是DA的一个重要扩展,它允许从多个具有不同特征的数据集中获取标注信息以进行训练。由于DA方法的成功以及多源数据的普遍性,MDA在学术界和工业界都引起了越来越多的关注。 本段落综述了近期关于MDA的研究成果与挑战,不仅涵盖了潜在空间转换(latent space transformation)和中间域生成等策略的应用,并总结了一些可用于评估这些技术的数据集。例如,在细粒度识别中,由于专家提供的可靠标签数量有限,从多个源领域学习并适应新环境变得尤为重要。 未来研究方向可能包括: 1. 如何有效地融合来自不同数据分布的多源信息; 2. 探索适合于MDA的深度网络架构以应对多样化的数据集; 3. 研究更先进的算法如元学习和生成对抗网络,为解决领域适应问题提供新的思路; 4. 将无监督或半监督学习方法与目标域标签相结合,从有限的信息中提取更多知识并应用于整个目标区域。 5. 分析迁移学习过程中模型性能下降的原因,并针对对抗样本及分布差异提出解决方案。 随着数据采集技术的进步和计算能力的提升,MDA有望在未来的研究中取得更大突破,在实际应用场景中的应用也将更加广泛。这将进一步推动深度学习在现实世界中的潜力与价值实现。