Advertisement

超光谱成像系统中棱镜光栅组合色散类型的优化设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究聚焦于超光谱成像系统的性能提升,特别探讨了棱镜与光栅的不同组合方式对色散效果的影响,旨在通过优化设计提高系统的分辨率和灵敏度。 光谱成像仪的发展趋势包括大视场、超高的光谱分辨率以及高空间分辨能力。抑制谱线弯曲和色畸变是确保二维谱图准确提取的关键因素之一。本段落提出了一种结合棱镜与光栅的新型光谱成像结构,并运用矢量方法建立了该组合色散元件的数学模型,优化了分光模块的相关参数。 基于此设计思路,我们开发了一个具有近直视光学路径的超光谱成像仪系统。其工作波段为400至800纳米(nm),入射狭缝长度达到14毫米(mm),F数设定为2.4。该系统的光谱分辨率达到了惊人的0.5 nm,且在探测器奈奎斯特频率68线对/毫米处的调制传递函数值均超过了0.7。此外,我们还成功地将谱线弯曲和色畸变控制在了1微米(μm)以内,这一数值仅为单个像素宽度的13.5%以下。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究聚焦于超光谱成像系统的性能提升,特别探讨了棱镜与光栅的不同组合方式对色散效果的影响,旨在通过优化设计提高系统的分辨率和灵敏度。 光谱成像仪的发展趋势包括大视场、超高的光谱分辨率以及高空间分辨能力。抑制谱线弯曲和色畸变是确保二维谱图准确提取的关键因素之一。本段落提出了一种结合棱镜与光栅的新型光谱成像结构,并运用矢量方法建立了该组合色散元件的数学模型,优化了分光模块的相关参数。 基于此设计思路,我们开发了一个具有近直视光学路径的超光谱成像仪系统。其工作波段为400至800纳米(nm),入射狭缝长度达到14毫米(mm),F数设定为2.4。该系统的光谱分辨率达到了惊人的0.5 nm,且在探测器奈奎斯特频率68线对/毫米处的调制传递函数值均超过了0.7。此外,我们还成功地将谱线弯曲和色畸变控制在了1微米(μm)以内,这一数值仅为单个像素宽度的13.5%以下。
  • 阶梯高分辨率交叉
    优质
    本研究提出了一种创新的光学系统设计方案,采用中阶梯光栅结合棱镜技术实现高效能、高解析度的交叉色散路径配置,显著提升光谱成像系统的性能。 本段落旨在设计一种宽光谱范围且高分辨率的中阶梯光栅-棱镜交叉色散光路系统。文中首先阐述了中阶梯光栅的独特色散特性,并详细介绍了基于该特性的交叉色散原理,进而提出了一种创新的设计方案。
  • 小入射角
    优质
    本研究针对小入射角棱镜成像光谱仪进行光学系统设计,旨在优化其在特定应用中的性能与效率。通过精心调整光学元件参数,实现高分辨率、宽光谱范围及小型化的设计目标,适用于环境监测和生物医学等领域的需求。 本段落研究了棱镜色散型光谱仪的特点及其分光原理,并提出了一种新型的小入射角棱镜分光光谱仪的设计方法。该设计采用全反射光路,无需加入校正透镜,从而避免因色差引起的像差问题,提高了成像质量并有效校正了光谱弯曲现象。通过光学设计软件Zemax对所设计的成像光谱仪系统进行了分析和验证。结果表明,在各个波段内该系统的光学传递函数均接近衍射极限,并且光谱弯曲较小,完全满足预期的设计指标要求。
  • C-T透射式阶梯图还原模
    优质
    本文提出了一种针对C-T型棱镜透射式中阶梯光栅光谱仪的谱图还原模型,旨在提高复杂光谱数据处理和解析能力。该模型通过精确校准仪器参数并优化算法实现高效的谱线识别与分析,在天文观测、物质成分检测等领域展现出广泛应用前景。 针对中阶梯光栅光谱仪通过交叉色散形成的二维光谱图无法直接进行波长标定的问题,我们建立了一种C-T型棱镜透射式中阶梯光栅光谱仪的谱图还原模型。该模型详细分析了棱镜和光栅在各自色散方向上的规律以及两者之间的相互作用关系,并建立了波长与像面坐标的关系表达式。 根据这种类型中阶梯光栅光谱仪特有的光学结构及各个元件对光线传输的影响,我们校正了由于各光学元件引入的计算误差。最终精确地计算出每个波长对应的像面坐标,从而完成了该类仪器二维谱图还原模型的建立。通过这种方法所构建的模型能够快速准确地对该类型中阶梯光栅光谱仪进行二维谱图还原和波长标定,并且其计算误差小于一个像元。
  • 基于全息变间距极紫外
    优质
    本文介绍了一种创新性的极紫外成像光谱仪光学系统的开发,采用全息变间距光栅技术,旨在提高光谱分辨率和观测效率。该设计对于空间物理与天文研究具有重要意义。 随着对太阳等离子体活动物理过程研究的深入发展,设计高性能太阳极紫外成像光谱仪变得越来越重要。一种有效的方法是应用变间距光栅技术。本段落提出了一种使用全息变间距光栅来设计太阳极紫外成像光谱仪的新方法:首先制定系统的初始光学结构;接着利用1stopt软件的全局优化算法,根据全息变间距光栅的光程差原理计算出具有较小像差的光栅;最后通过Zemax软件对整个系统进行建模与进一步优化。文中提供了一个具体的设计案例,设计出的工作范围为17至21纳米、视场宽度为2400角秒且空间分辨率为每像素0.6角秒和光谱分辨率为每像素0.00225纳米的太阳极紫外成像光谱仪。该仪器长度约为两米,并在所设定的工作波长范围内,其空间方向与光谱方向上的均方根半径以及截止频率范围内的调制传递函数都达到了要求的标准。
  • MATLAB仿真自然经三过程动画
    优质
    本作品利用MATLAB软件创建了一段动画,生动展示了自然光线通过三棱镜时发生的色散现象,有助于理解光的折射和色彩组成原理。 在MATLAB中模拟自然光通过三棱镜色散的动画可以使用以下代码: ```matlab figure(position,[78 276 792 402]); xp=[-0.2,0.2,0];yp=[0.2,0.2,0.5]; B=pi/14; ZZ=[xp;yp]*[cos(B),sin(B);-sin(B),cos(B)]; fill(ZZ(:,1),ZZ(:,2),[0.2,0.4,0.6]); axis([-1,1,0,1]);hold on;set(gca,color,k); t=0; A=pi/8; set(gcf,doublebuffer,on); x=[-1,-1];y=[0,0]; H=plot(x,y,w,linewidth,6); ``` 这段代码用于创建一个三棱镜的图形,并设置了初始光线的位置和颜色。通过调整参数可以模拟自然光经过三棱镜时发生的色散现象。
  • 与全__matlab_高_高_
    优质
    本项目聚焦于利用MATLAB平台实现高光谱图像和全色图像的融合技术研究。通过优化算法,提升高光谱影像的空间分辨率,结合光谱信息与空间细节,旨在提高遥感数据分析精度与应用价值。 自行替换高光谱和全色影像的名称即可运行Brovey_fuse。
  • 线性素:线性...
    优质
    线性光谱聚类超像素是一种先进的图像处理技术,通过优化线性光谱解混过程生成高质量、连贯性强的超像素区域,广泛应用于遥感影像分析与目标检测。 该程序演示了以下论文中提出的LSC超像素分割方法: Jiansheng Chen, Zhengqin Li, Bo Huang, Linear Spectral Clustering Superpixel, IEEE Transactions on Image Processing, Vol. 26,第7期,第3317-3330页,2017年。 Zhengqin Li, Jiansheng Chen, Superpixel Segmentation using Linear Spectral Clustering,IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2015年6月 该程序可免费用于非商业学术用途。未经作者同意,严禁任何商业用途。 在Matlab下使用命令编译LSC_。
  • 凸面.zip
    优质
    本设计文档探讨了凸面光栅光谱仪的创新设计方案,详细描述了其光学原理、结构特点及应用前景,为相关领域研究提供参考。 利用Zemax软件设计凹面光栅光谱仪的过程较为详细,是系统入门的最佳选择之一。资源整理不易,请珍惜。
  • 改进Czerny-Turner方法
    优质
    本研究提出了一种优化的Czerny-Turner型成像光谱仪设计方法,旨在提高其成像质量和分辨率。通过创新性地调整关键元件布局与材料选择,实现了更宽的光谱范围和更高的灵敏度。该方法在天文观测、环境监测及生物医学应用中展现出巨大潜力。 像散是目前限制Czerny-Turner结构成像光谱仪空间分辨率的主要因素之一。通过引入柱面反射镜,并利用光焦度来评估像散的大小,推导出了便于计算的校正公式,从而有效解决了像散问题。此外,还提出了一种准直镜到光栅距离的计算方法,以纠正边缘视场中的像差。同时给出了成像光谱仪中像面倾角的计算方式,实现了宽波段范围内的精确校正。 基于上述技术手段设计并实现了一个改进型Czerny-Turner成像光谱仪,该设备覆盖115至200纳米的波长范围。其焦距为48毫米,F数设定为5.0,在整个视场和全波段范围内调制传递函数(MTF)均超过0.7。此外,此设计还确保了在宽频谱上的分辨率达到了每纳米0.22纳米,并且成像面尺寸达到8毫米乘以7毫米。 这种设计方案可以适用于不同结构需求的成像光谱仪中。