Advertisement

期货期权衍生品定价模型的VBA程序分析

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文章探讨了利用Visual Basic for Applications (VBA) 编程技术对期货与期权等金融衍生产品进行定价的模型分析。通过深入剖析相关算法,旨在为金融分析师和交易员提供实用工具和技术支持。 这段文字介绍了一些重要的期权定价模型及其相关交易策略:包括布莱克-舒尔斯期权定价模型、二叉树定价模型以及远期和互换的定价方法。这些内容非常全面,是学习理解和掌握衍生品定价的有效工具。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • VBA
    优质
    本文章探讨了利用Visual Basic for Applications (VBA) 编程技术对期货与期权等金融衍生产品进行定价的模型分析。通过深入剖析相关算法,旨在为金融分析师和交易员提供实用工具和技术支持。 这段文字介绍了一些重要的期权定价模型及其相关交易策略:包括布莱克-舒尔斯期权定价模型、二叉树定价模型以及远期和互换的定价方法。这些内容非常全面,是学习理解和掌握衍生品定价的有效工具。
  • Black-Scholes
    优质
    Black-Scholes期权定价模型是由费舍尔·布莱克、迈伦·斯科尔斯创立的金融衍生品估值理论,用于确定股票期权的价格。 蒙特卡洛期权定价模型可以自定义到期时间和标的价格,并返回相应的期权价格。
  • 及其他(第7版)习题解答书
    优质
    《期权、期货及其他衍生产品》(第七版)习题解答书为读者提供了详尽的解题指南和学习支持,帮助深入理解金融市场中的各种衍生工具。 Answer Book for John Hulls distinguished work.
  • 及其他》第二章读书笔记:市场与中央交易对手
    优质
    本书第二章的读书笔记聚焦于期货市场的核心机制及其风险管理角色,深入探讨了中央交易对手在保障市场稳定性和降低系统性风险方面的作用。 2.1 背景知识 期货合约交易在交易所内进行,并采用标准化合约形式;而远期合约则是在场外市场根据需求定制的非标准合同。 换算单位如下: - 1蒲式耳等于36.369升; - 1英里相当于1609米。 2.2 期货合约规格 跌停(limit down):指某日收盘价相比前一天,下跌幅度达到每日价格限制。 涨停(limit up):指当日收盘价与前一日比较,上涨达到每日的价格上限。 涨跌停变动(limit move):表示在任一方向上,价格波动达到了单日的允许范围。 头寸限额:规定了投机者能够持有的最大合约数量。
  • VBA-BS与隐含波动率中应用
    优质
    本研究探讨了VBA-BS模型在期权定价及提取隐含波动率方面的应用效果,分析其相对于传统Black-Scholes模型的优势和局限性。 使用Excel工具并通过BS模型计算合理的期权定价非常简便。只需在单元格中输入函数名并依顺序填入各变量即可轻易得出权证的理论价格。尽管BS公式具有解析形式,但隐含波动率并没有封闭解的形式,在实际应用中通常采用数值方法来估算隐含波动率。最常用的方法是牛顿-拉夫森迭代法。
  • 跳跃-扩散
    优质
    本研究探讨了包含跳跃过程的扩散模型在期权定价中的应用,分析了该模型对金融衍生品估值的影响,并通过实证研究验证其有效性。 在金融数学领域内,期权定价理论一直是重要的研究主题之一,尤其自20世纪70年代以来随着期权交易的兴起而催生了大量相关研究。传统的Black-Scholes模型是最早期的一种期权定价工具,它假设标的资产价格遵循几何布朗运动,并且预期收益率和波动率都是常数。然而,在实际应用中这一模型存在一定的局限性,例如无法准确解释市场中的某些现象(如隐含波动率微笑)。因此,研究人员开始寻找新的理论框架来更精确地反映市场价格的实际情况,跳跃-扩散模型便是其中之一。 跳跃-扩散模型认为股票价格不仅遵循连续的布朗运动(即扩散过程),还会经历不连续的价格跳变。这种模型能够更好地捕捉到市场中突然出现的大规模波动,并且在拟合实际市场的价格分布方面表现得更为出色。 张瑜、李凡和严定琪在其论文《跳跃-扩散模型下的期权定价》中,深入探讨了在这种环境下进行期权估值的方法论框架。他们假设金融市场中有两种资产:一种是无风险的(如国债),另一种是有风险的(如股票)。在设定无风险利率恒定且有风险资产价格遵循跳跃-扩散过程的基础上,他们研究了如何计算不同类型的期权价值。 张瑜等人的工作首先假定了股票价格服从一般的跳跃-扩散动态,并给出了相应的定价公式。随后,他们进一步考虑了一个更复杂的模型——非齐次Poisson跳跃-扩散框架,在这个情形下无风险利率是时间的函数。通过运用随机微分方程技术结合期权在有效期内没有现金分红支付的情况,研究者们推导出了具体的解,并提出了几种新的定价公式。 在这个过程中,随机微分方程起到了关键的作用;它不仅能够描述价格的变化趋势(包括连续变动和离散跳变),还能模拟这些变化的动态特性。非齐次Poisson过程则允许跳跃发生的频率随时间改变,从而更贴近现实市场的复杂性。 论文的核心关注点在于随机微分方程、Poisson跳跃-扩散模型以及期权定价理论的应用与创新。这类研究成果对于金融市场参与者来说非常重要,因为它可以帮助投资者更好地理解并利用金融衍生品的价值评估方法进行决策。 张瑜和李凡均任职于兰州大学数学与统计学院,并专注于金融工程领域的研究;严定琪则是该院校的副教授,同样致力于这一专业方向的工作。通过这篇论文的研究成果可以看出学者们是如何将抽象的数学理论应用于解决实际金融市场问题中的定价难题上,这不仅推进了学术界的理解深度也促进了相关产品设计和服务创新的发展。 总之,这些理论和模型的进步与发展对于提高金融市场的运作效率以及推动新类型的金融产品的开发具有重要意义。
  • 基于跳扩散欧式MATLAB源
    优质
    本MATLAB源程序运用跳扩散模型进行欧式期权定价,结合随机波动率与跳跃过程,提供金融工程领域研究和应用的有效工具。 这段代码是用于计算欧式期权价格的主程序,并且可以生成不同股票价格及利率情况下的欧式看涨期权图形。对于不同的参数设置(如跳跃幅度),该程序能够绘制相应的图表。
  • B-S应用探讨
    优质
    本文深入分析了B-S期权定价模型的基本原理及其在金融衍生品市场的应用现状,并对其适用性进行探讨。通过案例研究,提出改进意见,以期为实际操作提供理论指导和实践参考。 关于Black-Scholes模型的分析与讲解以及推导过程的内容可以涵盖该金融数学模型的基础概念、假设前提及其应用范围。此模型主要用于计算期权的价格,并且是衍生品定价理论中的一个核心工具。重写部分会详细介绍其背后的数学原理,包括随机微分方程和偏微分方程的解决方案,同时也会探讨如何在实际金融市场中运用这一模型进行投资决策分析。
  • Matlab美式看涨跳扩散代码-欧美...
    优质
    本资源提供了一套基于MATLAB编写的美式看涨期权跳扩散模型代码,适用于金融工程中欧美期权定价问题的研究与教学。 近年来,人们开发了许多替代模型来扩展Black-Scholes期权定价框架,以便更好地反映实际市场特征。在传统的Black-Scholes模型中,资产回报被假设为遵循布朗运动和正态分布。然而,实证研究揭示了两个关键问题:(i) 资产收益的分布具有比正态分布更高的峰度以及不对称且更重尾部的特点;(ii) 在期权市场中观察到一种称为“波动率微笑”的现象。 为了应对这些问题,一些模型被提出作为解决方案,其中包括Kou(2002)提出的跳跃扩散模型。该模型假定标的资产的价格可以根据布朗运动和双指数分布的跳变而变动。本论文旨在基于此框架开发美式期权的解析定价公式,并以此来有效确定其价格以及相关的对冲参数。 此外,本段落还包含了一个Matlab代码实现,用于模拟Kou跳跃扩散模型中的美国期权定价问题。通过该代码可以更好地理解及验证理论分析结果的有效性与实用性。