Advertisement

基于FPGA的宽带数字接收机中变带宽数字下变频器在EDA/PLD中的设计

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了基于FPGA技术的宽带数字接收机中变带宽数字下变频器的设计,特别关注其在电子设计自动化(EDA)与可编程逻辑器件(PLD)的应用。 摘要:基于FPGA芯片Stratix II EP2S60F672C4设计了一个适用于宽带数字接收机的带宽可变的数字下变频器(VB-DDC)。该VB-DDC结合传统数字下变频结构与多相滤波结构的优点,实现了对输入中频信号的高效高速处理,并且可以在较大范围内灵活配置信号处理带宽。硬件调试结果验证了本设计的有效性。 变带宽数字下变频器(VB-DDC)能够处理多种不同带宽的输入信号,在雷达、通信和电子侦察等领域具有广泛应用。商用数字下变频器,如Intersil公司的单通道DDC HSP50214B,虽然可以实现可调的处理带宽,但其最高输入数据采样率仅为65 MHz。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • FPGAEDA/PLD
    优质
    本研究探讨了基于FPGA技术的宽带数字接收机中变带宽数字下变频器的设计,特别关注其在电子设计自动化(EDA)与可编程逻辑器件(PLD)的应用。 摘要:基于FPGA芯片Stratix II EP2S60F672C4设计了一个适用于宽带数字接收机的带宽可变的数字下变频器(VB-DDC)。该VB-DDC结合传统数字下变频结构与多相滤波结构的优点,实现了对输入中频信号的高效高速处理,并且可以在较大范围内灵活配置信号处理带宽。硬件调试结果验证了本设计的有效性。 变带宽数字下变频器(VB-DDC)能够处理多种不同带宽的输入信号,在雷达、通信和电子侦察等领域具有广泛应用。商用数字下变频器,如Intersil公司的单通道DDC HSP50214B,虽然可以实现可调的处理带宽,但其最高输入数据采样率仅为65 MHz。
  • DDC_30m.zip_DDc MATLAB__MATLABDDC_DDC
    优质
    该资源包提供了MATLAB实现的宽带数字下变频(DDC)算法代码,适用于信号处理与通信系统中的高速数据解调。 基于宽带情况下数字下变频的全过程仿真程序。
  • FPGA据转换与信号处理应用
    优质
    本研究聚焦于利用FPGA技术进行超宽带信号的高效数字下变频设计,探讨其在现代通信系统中的数据转换和信号处理应用。 本段落介绍了采用FPGA并结合并行多相滤波算法的超宽带数字下变频技术。设计流程包括了对高速AD信号进行降速预处理,并利用SysGen开发环境来完成数字混频、多相滤波以及数据抽取等步骤,同时通过仿真验证了该方法的有效性。 随着雷达应用需求的增长和数字信号处理技术的进步,人们越来越倾向于采用软件无线电的设计理念。这种设计理念要求ADC尽可能靠近天线安装,以便尽早地将接收到的模拟信号转换为数字化形式。 在接收系统中,通常使用FPGA来实现从数字化中频信号到基带I/Q信号的下变频过程。然而,在超宽带雷达应用背景下,由于需要处理更高频率和更宽范围的信号载波,这就要求ADC具备更高的采样速率,进而使得数字下变频技术面临更大的挑战。
  • 信道化
    优质
    本研究聚焦于数字宽带接收机的设计与优化,特别关注其信道化技术的应用与发展,旨在提升信号处理效率和质量。 在现代电子战环境中,信号通常表现出密集化、复杂化的特征,并且占用的频谱越来越宽泛,这使得宽带数字信道化接收机准确接收到这些信号的要求越来越高。传统的多相滤波器在监测整个频段时,由于相邻通道之间可能存在盲区,可能会导致某些信号被遗漏。改进后的无盲区多相滤波器其通道数量与抽取倍数不再相同。传统的方法如旋转开关技术仅适用于信道数目和抽取倍率相等的情况,并不能适应这种新算法的需求。然而,在许多情况下,信道的数量和抽取因子之间存在一定的比例关系,本段落正是利用了这一特性解决了延迟及抽取的问题,并完成了复多相滤波器的FPGA设计。
  • 信号经通采样后IQ谱仿真
    优质
    本研究探讨了中频宽带信号通过带通采样后的数字下变频过程,并进行了IQ谱的仿真分析。 带通采样仿真涉及生成非对称的雷达中频宽带信号,并对其进行带通采样、数字下变频以及滤波处理后得到IQ频谱。
  • FPGAEDA/PLD秒表
    优质
    本项目旨在基于FPGA技术,开发一款高效的电子设计自动化(EDA)与可编程逻辑器件(PLD)相结合的数字秒表。该秒表的设计融合了硬件描述语言和时序逻辑控制,确保精确计时功能的同时,提供灵活的电路配置选项,适用于教学、科研及工业应用等多个场景。 基于FPGA的数字秒表设计 在现代电子设计自动化(EDA)和可编程逻辑器件(PLD)领域,FPGA因其灵活性高、可重配置性以及快速原型验证等优点被广泛应用于各种数字系统的设计中。本段落详细介绍了如何使用VHDL语言编写源代码,在以EPlC6Q240芯片为核心的FPGA开发板上设计并实现一个数字秒表,并通过EDA工具进行仿真和验证。 **一、系统设计方案** 1. **总体框图** 数字秒表由分频器、计数模块、功能控制模块、势能控制模块以及显示输出模块构成。这些组件协同工作,确保秒表能够正常运行并准确地展示时间信息。设计采用了EPlC6Q240 FPGA芯片作为核心控制器,并与开发板上的外围电路配合使用。 **二、系统功能要求** - **显示功能**: 通过四个7段数码管分别来表示秒和百分秒。 - **状态控制**: 支持三种不同的操作模式,包括运行时间计数、归零以及正常时钟展示。用户可以通过输入特定的信号来进行这些模式之间的切换。 - **设定与调整**: 用户可以设置时间和进行计数操作;秒钟采用60进制而十分之一秒则使用100进制,在达到最大值后会自动回零或递增。 **三、模块功能设计及仿真** 1. **分频器** 50 MHz的系统时钟经过三级分频,以生成用于计数和势能控制所需的100 Hz与1,000 Hz频率信号。这部分的设计通过VHDL语言实现,并进行了相应的逻辑验证。 2. **计数模块** 包含两个独立的计数器:一个响应于100 Hz时钟脉冲,用于十分之一秒的累加;另一个则在前者进位后启动对秒钟(60进制)进行递增。这些操作由外部提供的开始/停止和复位信号控制。 3. **势能控制器** 采用每秒扫描一次的方式驱动四个数码管显示数字,并确保每个显示器以250 Hz的频率刷新,避免了视觉上的闪烁现象。这部分代码处理的是如何按照特定顺序点亮各个LED段来形成所需的数值显示效果。 4. **输出控制模块** 因为开发板上只有一个数据端口连接到所有四位数显管,所以需要精确同步输入的数据与相应的势能信号以保证正确的数字展示。此外,还根据功能转换指令调整显示模式。 **四、系统仿真及验证** 完成各部分的硬件描述语言编程后,在QuartusⅡ平台上进行编译和逻辑模拟,并通过观察生成的标准波形文件来确认各个模块的功能是否符合预期设计目标。 **五、实施与测试** 选用Altera公司的EPlC6Q240 FPGA,利用VHDL代码及QuartusⅡ工具完成从输入到输出的所有步骤:编程输入、编译优化逻辑结构直至最终生成配置文件并下载至硬件平台进行实际操作验证。 **六、结论** 本项目成功地展示了如何借助现代EDA技术和FPGA技术实现一个完整的数字秒表系统,不仅大大缩短了产品开发周期和降低了成本投入,同时也保证了系统的可靠性和高性能表现。这种基于模块化设计思想的解决方案在未来的电子产品中具有广泛的应用前景和发展潜力。
  • FPGAEDA/PLD传输系统与实现
    优质
    本项目聚焦于利用FPGA技术设计和实现一个高效的数字基带传输系统,应用于EDA/PLD领域,强调其实用性和创新性。 在现代通信领域内,数字通信系统的重要性日益凸显,而其中的数字基带传输系统更是不可或缺的一部分。随着技术的发展趋势指向更高的集成度、更好的可靠性和更低的能量消耗,使用可编程逻辑器件(PLD),如Field Programmable Gate Array (FPGA) 来设计和实现这样的系统变得越来越有吸引力。 本段落探讨了一种基于VHDL语言的数字基带传输系统的创新设计方案。作为一种高级硬件描述语言,VHDL允许设计师在抽象层次上定义电子系统,从而提高了设计灵活性与模块化程度。文中详细介绍了信号码型的设计原则、编码和译码原理等关键概念,并阐述了使用该方法的具体步骤。 信号码型选择对于确保数据能在信道中有效传输至关重要。常见的码型包括NRZ(Non-Return-to-Zero)、曼彻斯特编码以及差分曼彻斯特编码,每种都有其特定的适用场景和优势。此外,文中还讨论了如何使用不同的技术如PCM或卷积编码来增加信号冗余度以提高抗噪声能力。 在设计阶段中,利用VHDL编写编码器与译码器逻辑描述,并通过QuartusⅡ进行仿真验证是关键步骤之一。作为一款强大的EDA平台,QuartusⅡ提供了从设计输入、逻辑综合到配置文件生成的全流程服务,确保设计方案满足性能和资源需求。 在硬件实现方面,选择了Altera公司的ACEX1KEP1K30TC144- IFPGA芯片进行实验验证。FPGA因其高度可编程性而能够灵活地实现各种复杂功能,并且成本效益较高,在初期开发及小批量生产阶段尤其明显。 数字基带传输系统虽然不如频带传输普遍,但在本地网络通信、数据存储和传输等领域仍然发挥着重要作用。通过在FPGA上实施该类系统设计不仅满足了集成度高、可靠性和低成本的需求,还提供了更高的灵活性以适应多种应用场景的变化需求。 综上所述,本段落提出了一种结合VHDL语言与FPGA技术的数字基带传输系统的高效设计方案,这将有助于提升通信系统的性能并降低开发成本。随着FPGA技术的发展和优化,可以预见未来更多复杂的系统将会从这种设计策略中受益。
  • 无线网络前端研究
    优质
    本研究聚焦于无线网络宽带环境下数字中频接收机的射频前端技术,探索其设计与优化方法,以提升通信系统的性能和效率。 射频前端模块的性能直接影响整个接收机的表现。由于宽带数字中频接收机具备卓越的整体性能而备受关注。本段落探讨了几种不同的接收机前端拓扑结构及其各自的优缺点,并重点介绍了宽带数字中频接收机射频前端的设计方案和工作原理,详细说明了该设计方案的具体实现过程,并提供了部分仿真及测试的结果。
  • FPGA密码锁EDA/PLD应用
    优质
    本项目探讨了利用FPGA技术设计并实现一款数字密码锁,旨在研究和展示电子设计自动化(EDA)与可编程逻辑器件(PLD)的实际应用。通过硬件描述语言编写代码,在FPGA开发板上进行验证和测试,实现了具有高安全性和灵活性的数字密码锁定解决方案。 自古以来人们对物品安全就十分重视,在数字化时代背景下,电子锁正在逐步取代传统的机械锁,并被广泛应用于门禁、银行及保险柜等领域。然而,基于单片机的密码锁由于可靠性较差以及功能扩展有限的问题而备受诟病。随着物联网技术的发展,人们对于电子锁的安全性和可靠性的要求也日益提高。 本段落将介绍现场可编程门阵列(FPGA),这是一种在PAL、GAL和CPLD等可编程器件基础上进一步发展的新型产品。它具有高集成度的特点,使得电子产品体积得以大幅缩减,并且具备可靠性强、灵活性好以及效率高等优势,在设计师群体中广受欢迎。 1. 系统概述 功能介绍: 初始密码设置为000000,通过按下C键来设定新密码,完成密码设置后按A键上锁。
  • FPGA高速
    优质
    本项目聚焦于设计一种高效的高速数字下变频器,采用FPGA技术实现,旨在提升信号处理速度和灵活性,适用于无线通信领域。 我们设计了一种基于FPGA的高速数字下变频系统,在该设计中采用了并行NCO与多相滤波相结合的方法来降低数据速率,使其适应于数字信号处理器的工作频率。为了进一步提升系统的整体运行速度,我们在设计过程中充分利用了FPGA中的硬核资源DSP48。通过Xilinx ISE14.4分析报告得知,电路的最高工作频率可达360MHz。最后,在Matlab和ModelSim中进行了仿真验证,证明各个模块及整个系统均能正常工作。