本文探讨了针对永磁同步电机驱动系统中逆变器死区效应的补偿策略,旨在提高系统的控制性能和运行效率。
在工业伺服驱动领域,永磁同步电机逆变器是交流伺服系统中的重要组成部分。然而,在PWM(脉宽调制)逆变器的应用中,为避免直流母线直接短路的问题,需要在功率管的开关信号之间插入延时时间,即死区时间。这种做法会导致输出波形畸变和基波电压下降,从而影响伺服系统的性能提升。
为了应对这一问题,研究人员提出了多种死区补偿策略,主要可以归纳为三类:一是通过补充缺失脉冲来抵消其对逆变器输出的影响;二是基于无效器件原理进行的死区时间修正;三是采用电流预测控制方法。第一种方法在相同的电流极性区间内添加相反极性的脉冲以弥补因缺少信号而产生的影响,是一种较为直接且简单的解决方案。
第二种策略则侧重于保持有效器件驱动信号不变的同时调整无效器件的工作状态来满足设定的死区时间要求,但此法在电流过零点时可能会由于误差导致波形失真,因此需要特别注意处理这一区域的问题。第三种方法则是通过建立电机系统的精确模型,并预测和校正电流波形中的畸变部分以实现补偿效果。
逆变器中应用的死区时间补偿技术对提高伺服驱动性能具有重要意义,它能够减少由于死区效应造成的输出波形失真问题,进而提升电压基波幅值及电流质量。根据不同应用场景的需求选择合适的补偿策略是关键所在:例如,在高频环境下可以优先考虑脉冲补充法;而在低频场景下,则更适宜采用无效器件驱动调整的方式。
总之,永磁同步电机逆变器的死区时间补偿技术是一项至关重要的优化伺服系统性能的技术手段,能够显著改善输出波形的质量和电压基波幅值。