Advertisement

JavaScript核心概念(对象、原型、继承、作用域、闭包、this).pdf

  • 5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本书深入探讨了JavaScript的核心概念,包括对象、原型链、继承机制、作用域规则及闭包原理,并详细解析了“this”关键字的应用场景。适合希望深化理解JS语言特性的开发者阅读。 面向对象概念包括对象封装、各种继承机制以及闭包原理等内容,并且会清晰易懂地介绍this作用域等相关知识。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • JavaScriptthis).pdf
    优质
    本书深入探讨了JavaScript的核心概念,包括对象、原型链、继承机制、作用域规则及闭包原理,并详细解析了“this”关键字的应用场景。适合希望深化理解JS语言特性的开发者阅读。 面向对象概念包括对象封装、各种继承机制以及闭包原理等内容,并且会清晰易懂地介绍this作用域等相关知识。
  • JavaScript通过链实现的详细方法解析
    优质
    本篇文章深入解析了使用JavaScript中的原型和原型链来实现对象间继承的方法,帮助开发者更好地理解和运用这一关键技术。 本段落主要介绍了JavaScript使用原型和原型链实现对象继承的方法,并简述了JavaScript中的原型与原型链原理。结合实例详细分析了常见的几种对象继承技巧。 在JavaScript中,每个函数都有一个内置属性`prototype`,它关联了一个包含可共享的属性和方法的对象。通过这些属性间的引用关系形成了一条称为“原型链”的链条,使子类能够访问到父类的方法或属性。 利用非标准但大部分现代浏览器支持的`__proto__` 属性以及 `Object.getPrototypeOf()` 方法可以获取对象的原型;而函数的 `prototype` 属性用于设置或获取该函数作为构造器时所创建的对象的原型。 **基本继承模式** 在这一模式下,子类直接将自身原型设为父类的一个实例。实现如下: ```javascript function FatherClass() { this.type = father; } FatherClass.prototype.getTyep = function() { console.log(this.type); } FatherClass.prototype.obj = {age: 35}; function ChildClass() { this.type = child; } ChildClass.prototype.getType = function() { console.log(this.type); } var father = new FatherClass(); father.getTyep(); // 输出 father var child = new ChildClass(); child.getType(); // 输出 child ``` 然而,这种方式存在一个问题:子类会继承父类的所有实例属性,并且这些属性不会被初始化。如果需要根据不同的子类实例来调整父类的实例属性值,则这种模式是不可行的。 **借用构造函数** 为了解决上述问题,可以使用`apply()`或`call()`方法在子类构造器中调用父类构造器,以确保每个子类都有独立且初始化过的属性: ```javascript function Parent(name) { this.name = name || parent; } Parent.prototype.getName = function() { return this.name; } function Child(name) { Parent.apply(this, arguments); } Child.prototype = Object.create(Parent.prototype); var parent = new Parent(myParent); var child = new Child(myChild); console.log(parent.getName()); // 输出 myParent console.log(child.getName()); // 输出 myChild ``` 这种方法确保了子类能够继承父类的实例方法,但修改子类原型仍然会影响父类。 **临时构造函数模式(圣杯模式)** 为解决上述问题,可以创建一个中间构造器来实现对父级原型的引用: ```javascript function Parent(name) { this.name = name || parent; } Parent.prototype.getName = function() { return this.name; } function Child(name) { Parent.apply(this, arguments); } var F = function() {}; F.prototype = Parent.prototype; Child.prototype = new F(); Child.prototype.constructor = Child; var parent = new Parent(myParent); var child = new Child(myChild); console.log(parent.getName()); // 输出 myParent console.log(child.getName()); // 输出 myChild ``` 这种模式避免了直接将父类原型赋值给子类,从而解决了共享原型的问题。 以上三种方法都是JavaScript中实现对象继承的常见方式。在实际开发过程中,还可以使用ES6引入的`class`语法糖来优化代码管理与维护过程,而底层机制依旧基于原型和原型链技术。
  • LACP工理及解析
    优质
    本文详细介绍了LACP(链路聚合控制协议)的工作机制及其关键概念,帮助读者理解如何通过动态配置实现网络带宽增强与连接冗余。 LACP工作原理及主要概念点详解,自学笔记,仅供学习参考。
  • 线性代数.pdf
    优质
    《线性代数核心概念》是一本专注于解析线性代数基本原理和关键理论的学习资料,适合初学者及需要复习巩固的学生使用。 ### 线性代数的本质 #### 一、线性组合、张成的空间与基 1. **线性组合** - 定义:向量的线性组合是指通过向量间的加法及与标量的乘法形成的新向量。例如,如果有两个向量 \(\mathbf{v}_1\) 和 \(\mathbf{v}_2\),那么它们的线性组合可以表示为 \(a\mathbf{v}_1 + b\mathbf{v}_2\) ,其中 \(a\) 和 \(b\) 是标量。 - 意义:线性组合的概念帮助我们理解如何通过几个简单的向量来构建更复杂的向量结构。 2. **张成的空间** - 定义:给定一组向量 \(\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}\),所有这些向量的线性组合形成的向量集合称为它们张成的空间。 - 特性: - 当两个向量 \(\mathbf{v}_1\) 和 \(\mathbf{v}_2\) 不共线时,它们的 span 将覆盖整个二维平面。 - 如果它们共线,则 span 只会是一条直线。 - 在三维空间中,三个不共线的向量 \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\) 的 span 将覆盖整个三维空间。 - 应用:张成的空间概念对于理解线性独立性和线性空间的基础非常重要。 3. **基** - 定义:向量空间的基是一组线性无关的向量,它们能够张成该向量空间。换句话说,任何向量都可以表示为这组向量的线性组合。 - 特性: - 基中的向量都是线性无关的。 - 任何多余的向量都位于已有基向量的 span 中,因此可以被去除而不影响 span。 - 基的选择不是唯一的,但同一空间的不同基所包含的向量数目相同。 #### 二、线性变换 1. **线性变换的基本性质** - 线性变换要求: - 直线在变换后仍保持为直线。 - 原点位置不变。 - 通过线性变换,可以直观地理解向量空间的变化过程。 2. **变换的表示** - 给定一组基向量,可以通过观察这些基向量在变换后的形态来确定整个空间的变化情况。 - 例如,在二维空间中,可以通过观察标准基向量 \(\mathbf{e}_1\) 和 \(\mathbf{e}_2\) 的变化来确定变换的效应。 3. **复合变换** - 二维复合变换:先进行旋转再进行剪切操作,可以通过逐层应用变换矩阵来实现。 - 三维复合变换:与二维空间相似,但涉及更多的维度和复杂性。 - 可解释性:通过复合变换,可以直观理解不同变换的顺序对结果的影响,例如矩阵乘法的顺序性和结合律等。 #### 三、行列式 1. **二维空间中的行列式** - 定义:行列式是衡量变换前后面积变化的比例因子。 - 意义:行列式的正负表示空间的定向是否发生翻转。 - 计算方法:对于二维变换,行列式的绝对值即为变换后面积与原面积的比例。 2. **三维空间中的行列式** - 类似于二维空间,但计算的是体积变化的比例。 - 行列式的绝对值等于变换后的平行六面体体积与原始体积的比例。 3. **行列式的可解释性** - 通过行列式的值可以判断矩阵所代表的变换是否会将空间压缩到更低维度。 - 行列式的乘法符合结合律,这意味着多次变换的累积效果可以通过各自行列式的乘积来计算。 #### 四、非方阵 1. **几何意义** - 非方阵表示从较高维度空间到较低维度空间的映射。 - 例如,一个 \(m \times n\) 的矩阵可以表示从 \(n\) 维空间到 \(m\) 维空间的映射。 2. **可解释性** - 非方阵的行列式没有明确的意义,因为它们涉及不同维度之间的变换,这种情况下无法简单地计算变换前后“体积”或“面积”的比例。 - 无法计算非方阵的行列式是因为其定义在不同维度的基向量变化之间,缺乏统一的度量
  • Web前端面试题JavaScript链、、封装函数).txt
    优质
    这段文本包含了关于JavaScript语言中几个核心概念的面试问题和解答,包括作用域、原型、原型链、闭包以及如何编写封装函数。适合前端开发人员参考学习。 前端面试题涵盖了JavaScript的闭包、作用域、原型、原型链以及上下文环境等方面的知识点,并且包括了DOM和BOM封装函数中的深度克隆等内容。这些问题虽然简单,但容易引起混淆,是测试前端工程师必备的能力题目。
  • C语言中结构体的
    优质
    本文探讨了如何在C语言中实现类似面向对象编程中的“继承”概念,重点介绍通过结构体和函数指针来模拟类与对象的方法。 在C语言里,并不像面向对象编程的语言如C++那样提供类继承的功能,但是通过巧妙地设计结构体可以实现类似的效果。这种机制通常被称为“嵌套的结构”,其实现方式是将一个结构体作为另一个结构体成员来包含。 这里有两个例子:`father` 结构和 `son` 结构。前者包括两个整数变量 f1 和 f2,后者则有一个类型为 father 的成员 fn 以及另外两个额外的整型变量 s1 和 s2。由于 fn 是 son 类的第一个成员,我们可以通过将指向 son 的指针转换成指向 father 指针的方式访问和修改父亲结构中的数据。 ```c struct father { int f1; int f2; }; struct son { struct father fn; // 父类作为子类的首元素 int s1; int s2; }; ``` 在 `test` 函数中,我们把指向儿子结构体的指针转换成父亲类型后就可以直接访问和修改父级结构中的数据了。这种方法特别适用于处理带有复杂层级关系的数据系统,在大型项目如Linux内核读写时非常有用。 然而需要注意的是,为了使这种机制有效运行,`father` 必须是 `son` 结构体的首个成员。这是因为C语言中内存布局的特点:一个儿子结构实例中的父亲部分会紧接在起始位置上;如果改变顺序(比如将 father 放到其他元素后面),强制类型转换就不再适用了。 这种方法让C语言通过嵌套的方式模拟类继承,允许我们扩展基础数据结构的同时保持对原有数据的访问。这种技巧对于处理复杂的系统级编程任务特别有用,但需要小心使用以确保遵循正确的内存布局规则避免错误发生。
  • 透彻掌握JavaScript链与机制
    优质
    简介:本课程深入浅出地讲解了JavaScript中的原型链和继承机制,帮助开发者全面理解对象创建、原型关系及其实现细节,是提高代码质量和效率的关键。 这篇文章主要介绍了JavaScript原型链和继承的概念,并详细讲解了如何使用原型链实现继承、经典继承、组合式继承以及寄生组合式继承的方法。内容非常实用且具有参考价值,推荐给大家阅读。
  • Java与知识点
    优质
    《Java核心概念与知识点》是一本全面解析Java编程语言基础和关键特性的指南,适合初学者及进阶开发者参考学习。 Java核心知识点包括线程、内部静态类以及抽象类等内容。
  • Java面向简介
    优质
    《Java面向对象概念简介》旨在为初学者提供一个清晰、简明的入门指导,介绍类与对象、封装、继承和多态等核心原理,帮助读者快速掌握Java编程的基础知识。 介绍Java面向对象的概念,适合想了解Java面向对象技术的初级人员阅读。