Advertisement

基于Verilog的示波器实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目旨在通过Verilog硬件描述语言设计并实现一个数字示波器。该示波器具备采集、处理和显示电信号的能力,适用于电子工程领域的教学与研究。 基于Xilinx Vivado工具开发,在Digilent Basys3开发板上运行tcl文件即可完成工程的综合、布线及bit生成。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Verilog
    优质
    本项目旨在通过Verilog硬件描述语言设计并实现一个数字示波器。该示波器具备采集、处理和显示电信号的能力,适用于电子工程领域的教学与研究。 基于Xilinx Vivado工具开发,在Digilent Basys3开发板上运行tcl文件即可完成工程的综合、布线及bit生成。
  • VerilogFIR滤
    优质
    本项目旨在通过Verilog硬件描述语言设计并实现一个高效的有限脉冲响应(FIR)滤波器。采用模块化设计方法,确保代码清晰、可读性强,并针对不同应用场景进行优化,以达到理想的滤波效果和性能指标。 FIR滤波器的Verilog实现涉及将有限脉冲响应滤波器的功能用硬件描述语言(如Verilog)进行编程,以在数字信号处理系统中应用该滤波器。这种实现通常包括定义滤波器系数、设计架构以及验证其性能等步骤。
  • VerilogFIR滤
    优质
    本项目旨在通过Verilog硬件描述语言设计并验证一个高效的有限脉冲响应(FIR)滤波器,以应用于数字信号处理领域。 FIR(有限冲击响应)滤波器是一种数字信号处理技术,在通信、音频处理及图像处理等领域广泛应用。它通过一系列预先定义的系数对输入序列进行线性组合来实现低通、高通、带通或带阻等不同类型的滤波功能。 Verilog 是一种用于设计和验证硬件电路的语言,常被用来描述数字系统中的逻辑门、触发器等多种模块,并可以综合成实际的物理电路。因此,在FIR滤波器的设计中,使用Verilog语言能够直接将设计转化为可编程逻辑器件或ASIC的实际布局布线。 `fir.v` 文件通常包含实现FIR滤波器功能的Verilog代码,其内容一般包括: 1. **模块定义**:以 `module fir` 开始定义一个名为 `fir` 的模块,并可能指定输入和输出信号。 2. **系数存储**:用二维数组表示FIR滤波器所需的系数值。 3. **移位寄存器**:为实现FIR功能,需要使用一组移位寄存器来保存输入序列的历史数据。 4. **乘法与累加运算**:利用 `*` 和 `+` 运算符计算每个系数与其对应输入样本的乘积之和,并通常在一个循环中完成该过程。 5. **时钟控制**:确保每次在时钟信号上升沿执行一次新的滤波操作,如使用 `always @(posedge clk)` 语句来定义这一行为。 6. **组合逻辑**:将计算结果输出为最终的滤波器输出。 设计FIR滤波器的一般流程包括: 1. 确定所需的频率响应特性; 2. 计算相应的系数值,这些可以通过多种方法得到; 3. 使用Verilog语言编写描述该滤波器结构的代码; 4. 通过仿真工具验证设计性能是否符合预期; 5. 将Verilog代码综合为逻辑门级电路,并部署到硬件平台如FPGA或ASIC上; 6. 在实际设备中运行并测试,确保其能满足应用需求。 这种结合数字信号处理技术和硬件描述语言的项目能够高效地实现复杂的数据处理任务。
  • FPGA核心Verilog代码.rar
    优质
    本资源提供了一套基于FPGA技术的示波器核心设计与实现的Verilog代码。适用于电子工程和计算机科学专业的学生及工程师研究学习使用,帮助用户深入了解数字信号处理及硬件描述语言编程。 Verilog编写基于FPGA的示波器核心实现。有需要的同学可以下载查看,但请注意,该资源仅包含程序源代码而无电路原理图。
  • Verilog二阶IIR滤
    优质
    本项目采用Verilog硬件描述语言设计并实现了二阶无限冲激响应(IIR)数字滤波器,适用于高频性能要求严格的信号处理场景。 本资源使用Verilog实现二阶IIR滤波器,并通过Vivado进行仿真。代码已经验证可用,其中的滤波器系数需要在Matlab的fdatool中生成。
  • Verilog16阶FIR滤
    优质
    本项目采用Verilog硬件描述语言设计并实现了16阶有限脉冲响应(FIR)滤波器,旨在优化数字信号处理中的线性相位特性与计算效率。 这段文字描述的是使用Verilog实现一个16阶的FIR滤波器,并且其系数是通过Matlab中的fdatool工具生成的。
  • Verilog HDL设计与
    优质
    本项目利用Verilog HDL语言实现了小波滤波器的设计,并对其性能进行了验证。该设计具有高效性和灵活性,在数字信号处理领域有广泛应用前景。 小波滤波器的设计属于复杂算法的电路设计。利用Verilog HDL对双正交小波滤波器进行建模和仿真,实现电路的自动化设计是一种较为理想的方法。
  • STM32
    优质
    本项目基于STM32微控制器设计并实现了功能完善的数字示波器系统,能够实时采集、显示和分析电信号,并提供基本的测量工具。 STM32实现的示波器是一种基于微控制器的电子设备,它可以捕捉并显示电压信号的变化,为电子工程师和爱好者提供了一种经济且灵活的调试工具。在这个实验中,我们使用了探索者STM32开发板,它是一款集成了STM32微控制器的开发平台,具有丰富的外设接口和强大的处理能力。同时,我们还连接了一个ALIENTEK TFTLCD模块,这是一个带有彩色液晶显示屏的硬件设备,能够实时显示捕捉到的波形。 在实验中,STM32将扮演核心角色,负责采集模拟信号、处理数据,并驱动TFTLCD模块来显示波形。实现示波器功能的关键在于信号采集和处理。开发板通常配备有ADC(模拟数字转换器),用于将模拟电压信号转化为数字值。ADC的工作原理是把连续变化的模拟信号转变为离散的数字信号,这需要配置合适的采样率和分辨率。 在本实验中,我们需要设置ADC的通道、采样时间以及转换精度,以确保能够准确地捕获信号的变化。然后,STM32的CPU会处理这些数字化的信号,并计算其幅度和频率特性。可能涉及到的算法包括数字滤波和峰值检测等,以便去除噪声并提取出有用的信号信息。 为了实现实时显示功能,CPU还需要控制TFTLCD模块的刷新率以确保屏幕上的波形图像与实际信号同步更新。ALIENTEK TFTLCD模块通常采用SPI或I2C通信协议连接到STM32开发板上,这些串行通信协议能够有效减少所需的引脚资源。 在编程阶段,我们需要配置STM32的相关外设接口,并发送控制指令和数据给TFTLCD模块以正确显示波形图像。这包括设置LCD的分辨率、颜色模式以及背光亮度等参数。实验过程中还需要编写相应的软件程序,通常使用如Keil MDK或STM32CubeIDE这样的集成开发环境来进行。 该程序包含初始化配置、中断处理、信号处理和显示更新等功能模块,并且良好的用户界面设计也很重要,例如设置适当的刻度和单位以方便读取分析波形数据。总的来说,通过STM32实现的示波器项目不仅能够锻炼开发者对微控制器、ADC及LCD模块等硬件设备的理解能力,还能提升在嵌入式系统设计、信号处理以及实时操作系统等方面的知识与技能水平。 这是一项实用且有趣的实践任务,无论是学习嵌入式技术的初学者还是专业的工程师都将从中受益匪浅。
  • FPGA时域匹配滤Verilog
    优质
    本项目致力于在FPGA平台上采用Verilog语言实现时域匹配滤波器的设计与优化,以提升信号处理效率和性能。 在FPGA上实现匹配滤波器的时域算法采用Xilinx ISE环境进行开发。该设计使用了750个采样点,并且采用了三个乘法器以及两个异步FIFO用于乒乓结构操作。当前代码中存在较多问题,可以提供一些思路来改进现有方案并重新编写这部分描述以抛砖引玉。
  • FPGAVerilog数字代码
    优质
    这段内容介绍了一种基于FPGA平台,使用Verilog硬件描述语言编写的数字示波器代码。该设计旨在为电子工程师和研究人员提供一个高效、灵活且可定制的信号观测工具。 基于FPGA的数字示波器代码采用Verilog编写,并使用了等效采样技术。该系统能够通过VGA进行显示,并支持上下左右移动波形的功能。此外,它还具备多频段显示的能力。