Advertisement

四足机器人进行基本的运动。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
通过使用STM32单片机对八个舵机进行控制,从而使它们能够执行运动,具体包括简单的前进和后退动作,以及转向等基本操作。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MIT Mini Cheetah Highly Dynamic
    优质
    MIT Mini Cheetah是一款小型四足机器人,专为执行高动态运动设计。它能够进行跳跃、后空翻等复杂动作,展现了先进的机械与控制技术,在机器人领域具有重要研究价值。 本段落提出了一种结合整体控制器控制(WBC)与模型预测控制(MPC)的方法。在该框架下,MPC负责确定较长时间范围内的最佳反作用力剖面,并使用简单的模型;而WBC则根据这些反作用力计算关节扭矩、位置和速度命令。不同于现有的WBC试图跟踪指令的身体轨迹,我们的控制器更专注于反应部队指挥部的控制,这使得它能够实现高速动态运动中的空中相位。新设计的WBC与MPC集成,并在小型猎豹四足机器人上进行了测试。为了证明其鲁棒性和通用性,该控制器在六种不同的步态下,在多种环境(包括户外和跑步机)中进行了测试,达到了最高3.7米/秒的速度。
  • 于CPG控制系统.pdf
    优质
    本文探讨了一种基于集中式相位生成算法(CPG)设计的四足机器人运动控制系统的开发与实现。该系统通过模拟生物神经系统中的模式发生器,能够自动生成并调整步态模式,适用于复杂地形下的自主导航任务。文中详细阐述了硬件架构、软件设计及实验验证过程,并展示了其在动态环境中的适应性和稳定性优势。 基于中央模式发生器(CPG)的四足机器人运动控制是仿生学研究的一个重要分支,这一领域主要从自然界动物的运动方式获取灵感,以实现在复杂环境下的稳定和高效移动。刘汉迪和贾文川两位学者于2017年发表的研究探讨了如何利用CPG网络来控制四足机器人的运动。 该研究的主要目的是提高四足机器人的运动稳定性和适应性。自然界中的动物通过脊髓内的中央模式发生器(CPG)控制肌肉活动,产生稳定的节律运动。在本研究中,研究人员构建了一个能够模拟这种生物机制的CPG网络模型,并利用它生成连续且协调的信号来驱动机器人关节的动作。 传统四足机器人的步态切换过程中经常会出现锁相和突变的问题,导致其动作不够平滑。为解决这一问题,在该研究中的CPG模型中引入了旋转矩阵。通过调整振荡器之间的相位差,可以输出连续和平滑的控制信号,并且能够生成适应不同步态需求的任意相位关系。 研究人员构建了一个改进版Hopf振荡器作为核心单元来建立一个控制网络模型,该模型由一系列状态方程构成。CPG网络中的每个振荡器对应于机器人的一条腿,并通过耦合实现相互之间的协调工作。根据不同的步态要求调整连接权重的值可以影响输出信号。 在ADAMS环境下定义了仿生四足机器人的虚拟样机模型,包括质量、材料以及运动约束等参数。该机器人由一个躯干和四条腿组成,每条腿具有三个自由度以满足三维空间内的动作需求。研究人员通过MATLAB/ADAMS联合仿真及实际测试验证了所提出的控制策略的有效性。 仿真实验中展示了walk步态与trot步态的数值结果。其中,walk步态在稳定性和适应性方面表现更佳,因为它不需要频繁调整重心位置。此外,使用旋转矩阵来调节振荡器之间的相位差可以克服传统切换时出现的问题,并为机器人提供了更好的控制能力。 关键词包括“四足机器人”、“节律运动”、“CPG”、“旋转矩阵”和“步态切换”,这些反映了文章的核心内容。这项研究不仅对未来的四足机器人设计与控制提供理论和技术参考,还推动了仿生学原理在机器人技术领域的应用和发展。通过进一步调整参数及优化策略,可以增强机器人的自主运动能力,在未知或变化环境中更好地发挥作用。
  • 3D版 21版
    优质
    本项目为一款先进的四足机器人设计,包含三维建模与仿真。其最新版本——21版,优化了运动算法和结构设计,具备卓越的机动性和稳定性,在复杂地形中表现出色。 四足机器人是一种具有四个腿的机器人装置,能够在各种地形上灵活移动并执行特定任务。这类机器人的设计通常模仿动物的动作模式,以实现高效稳定地行走、奔跑或跳跃等功能。它们在科研机构、工业生产和军事领域中有着广泛的应用前景。 重写后的内容: 四足机器人能够适应不同环境,在多个行业中发挥作用。通过模拟生物运动方式,这种类型的机器人可以平稳且有效地移动,并完成各种作业任务。
  • 轨迹分析与规划.pdf
    优质
    本文探讨了四足机器人足端运动轨迹的分析方法及规划技术,旨在优化其行走和跑步性能,提高机器人的稳定性和灵活性。 #资源达人分享计划# 这个活动旨在为参与者提供丰富的学习资源和交流机会,帮助大家在各自的领域内成长和发展。通过分享知识、经验和技巧,大家可以互相支持,共同进步。无论是编程技能的提升还是项目经验的积累,在这里都能找到适合自己的内容和伙伴。 欢迎所有对技术感兴趣的朋友加入我们!
  • 走技术——操控技巧
    优质
    本课程聚焦于四足机器人领域,深入讲解并实践四足行走技术及其控制策略。通过学习,学员将掌握设计与操作高效稳定的四足机器人所需的关键技能和理论知识。 四足运动——四足机器人控制技术 《Quadrupedal Locomotion:An Introduction to the Control of Four-legged Robots》 作者:Pablo Gonzalez de Santos、Elena Garcia、Joaquin Estremera 译者:王宇、徐震宇 该资源质量较好,个人认为值得推荐。
  • 于DDPG智能体控制方法
    优质
    本研究提出了一种基于DDPG算法的四足机器人运动控制策略,通过模拟实践优化步态和动态调整参数以实现高效稳定的行走模式。 MATLAB强化学习实战(十四)基于DDPG智能体的四足机器人运动控制 本段落介绍了如何使用MATLAB进行强化学习实践,并重点讲解了利用DDPG算法对四足机器人的运动控制问题进行解决的方法和技术细节,为读者提供了深入理解和应用该领域的参考。
  • Legged Robots For Bullet(于PyBullet)
    优质
    本项目运用PyBullet物理引擎开发了双足及四足行走机器人模拟系统,旨在研究和优化腿足式机器人的运动控制与平衡能力。 腿机器人该存储库是使用pybullet的步行机器人模拟器。要求安装PyBullet、control和scipy这些软件包,可以通过pip命令进行安装: ``` pip install pybullet pip install control pip install scipy ``` 双足示例:example_preview_control.py 四足逆运动学示例:example_stand_up.py
  • Arduino控制:Quadriped
    优质
    Quadriped是一款基于Arduino平台开发的四足机器人项目。它通过精确编程实现了流畅行走和灵活转向等功能,为用户探索机器人技术提供了实践机会。 四足Arduino 四足步行者版本 3
  • 简易走解析
    优质
    本文章详细解析了简易四足机器人的行走机制与控制策略,旨在帮助读者理解四足机器人在不同地形上的运动原理和技术细节。 使用STM32单片机控制8路舵机实现基本的前进、后退及转弯操作。
  • 文件包(含说明书和代码).rar_arduino__stl模型_蜘蛛程序_
    优质
    本资源提供一个完整的四足机器人制作方案,包含详细的Arduino编程指南、动作控制代码及3D打印STL模型,适用于爱好者构建和研究。 通过8个舵机实现蜘蛛类的仿生运动,文件包含所有的打印件及嵌入程序,并提供Arduino源代码。该系统支持10多种不同的运动模式,可以通过蓝牙或WiFi进行控制。