Advertisement

基于麻雀搜索算法的核极限学习机回归预测优化及评估,SSA-KELM模型与多变量输入分析,性能指标涵盖R2、MAE、MSE、R

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究提出了一种基于麻雀搜索算法优化的核极限学习机(SSA-KELM)回归预测模型,并进行了多变量输入分析。通过评估R²、MAE和MSE等性能指标,展示了该方法的有效性与优越性。 麻雀算法(SSA)优化了核极限学习机回归预测模型,并且该方法适用于多变量输入的情况。评价指标包括R2、MAE、MSE、RMSE和MAPE等,代码质量非常高,便于学习与替换。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • SSA-KELMR2MAEMSER
    优质
    本研究提出了一种基于麻雀搜索算法优化的核极限学习机(SSA-KELM)回归预测模型,并进行了多变量输入分析。通过评估R²、MAE和MSE等性能指标,展示了该方法的有效性与优越性。 麻雀算法(SSA)优化了核极限学习机回归预测模型,并且该方法适用于多变量输入的情况。评价指标包括R2、MAE、MSE、RMSE和MAPE等,代码质量非常高,便于学习与替换。
  • 海鸥(SOA),SOA-KELMR2MAEMSER
    优质
    本文提出了一种结合海鸥算法优化的核极限学习机回归预测模型(SOA-KELM),并进行了多变量输入效果分析,评估标准包括R²、MAE、MSE和相关系数。 海鸥算法(Seagull Optimization Algorithm, SOA)是一种模仿海鸥在寻找食物过程中飞行行为的新兴生物启发式全局优化方法,在机器学习领域中用于参数优化以提升模型性能。这里提到的是将SOA应用于核极限学习机(Kernel Extreme Learning Machine, KELM)进行回归预测,构建了一个多变量输入的模型。 KELM是一种基于随机权值的非线性支持向量机模型,通过使用核函数将输入空间映射到高维特征空间来实现非线性的决策边界。其主要优点是训练速度快且不需要迭代优化,在KELM回归预测中,首先利用核函数转换输入数据,并通过简单的线性组合进行预测。 SOA-KELM回归预测的过程如下: 1. **初始化**:随机生成模型参数以初始化海鸥种群的位置。 2. **评估**:计算每个海鸥对应模型的适应度值(即预测误差),常用的评价指标包括决定系数R²、平均绝对误差(MAE)、均方误差(MSE)、均方根误差(RMSE)以及平均绝对百分比误差(MAPE)。 3. **海鸥飞行**:根据SOA规则更新种群的位置,调整模型参数。这一过程涉及对最优解的探索和局部最优的逃避以找到全局最优解。 4. **终止条件**:达到预设迭代次数或适应度阈值时算法停止,并将当前最佳解决方案作为最终结果。 文件列表中的`kernel_matrix.m`可能包含核矩阵计算,这是KELM的关键部分。由于它决定了输入数据在高维空间的表示方式。而`soa.m`很可能实现海鸥种群更新规则的核心代码。通常情况下,入口文件为`main.m`, 它调用其他函数并执行SOA-KELM优化过程。 此外,初始化程序(如`initialization.m`)负责生成初始参数值;适应度计算可能在`fun.m`中定义;而KELM的训练和预测功能则分别由`kelmTrain.m`和`kelmPredict.m`实现。最后,“使用说明.txt”提供了如何运行代码的指南,同时“data.xlsx”是输入的数据集。 此模型适用于多变量输入预测问题领域如环境科学、经济预测及工程设计等,并通过SOA优化自动寻找最佳核函数参数与隐含层节点数以提高预测精度。用户可根据自己的数据集替换`data.xlsx`, 并根据指南运行代码,应用该模型进行实际预测工作。
  • 粒子群,PSO-KELM,涉R2MAEMSE
    优质
    本文探讨了利用改进的粒子群优化(PSO)技术对核极限学习机(KELM)进行参数调优的方法,并构建了一个能够处理多变量输入的回归预测模型。文中详细分析了该模型在R2、平均绝对误差(MAE)和均方误差(MSE)等指标上的表现,证明其在提高预测精度方面的优越性。 粒子群算法(PSO)优化核极限学习机回归预测模型(PSO-KELM),适用于多变量输入场景。评价指标包括R2、MAE、MSE、RMSE和MAPE等,代码质量高且易于学习与数据替换。
  • 灰狼(GWO)(ELM)R2MAEMSE
    优质
    本研究提出了一种结合灰狼优化算法与极限学习机的新型回归预测模型,并通过R²、MAE及MSE等指标评估了其在多变量输入条件下的性能。 灰狼算法(GWO)优化极限学习机(ELM)回归预测模型,在多变量输入的情况下进行分析。评价指标包括:R2、MAE、MSE、RMSE 和 MAPE 等,代码质量极高,便于学习和替换数据。
  • (SSA)森林数据SSA-RF,涉R2MAEMSE和RM
    优质
    本研究提出了一种结合麻雀搜索算法与随机森林的数据回归预测模型(SSA-RF),并对其在多变量输入下的性能进行了基于R²、MAE、MSE及RM的综合评估。 在数据分析与机器学习领域内,随机森林(Random Forest)是一种广泛应用的集成方法,它通过构建大量决策树并取其平均结果来提高预测准确性和降低过拟合的风险。本项目旨在利用麻雀算法(Sparrow Search Algorithm, SSA)优化随机森林模型,并建立SSA-RF回归预测模型以处理多变量输入的问题。这种方法能够提升模型的性能,适用于各种复杂的数据集。 麻雀算法是一种受到麻雀群体行为启发的优化方法,具备快速搜索和全局探索的能力,在解决复杂的优化问题中表现出色。在此项目中,SSA被用来调整随机森林中的参数设置(如树的数量、每个节点划分特征数等),以寻找最优配置方案。 构建随机森林回归预测模型通常涉及以下步骤: 1. 数据预处理:加载并清洗data.xlsx文件中的数据,包括缺失值的填充和异常值检测,并进行必要的标准化。 2. 划分数据集:将原始数据分为训练集与测试集。其中,训练集用于建立模型;测试集则用来评估模型泛化能力。 3. 随机森林训练:通过`regRF_train.m`脚本执行随机森林的构建过程,在此过程中每棵树生成均带有随机性(如特征和样本的选择)。 4. 优化超参数:使用麻雀算法(`SSA.m`)对随机森林中的关键参数进行调优,以提高模型预测精度。 5. 模型评估:利用`main.m`主程序结合`regRF_predict.m`函数来执行测试并评价结果。评价指标包括R2(决定系数)、MAE(平均绝对误差)、MSE(均方误差)、RMSE(均方根误差)以及MAPE(平均绝对百分比误差),以全面评估模型的预测准确性。 6. 加速代码:通过`mexRF_train.mexw64`和`mexRF_predict.mexw64`经过编译的C++代码来加速训练及预测过程,提高程序效率。 学习并应用此项目可以让你掌握如何结合优化算法改进随机森林模型,并学会使用多种评估指标衡量模型性能。对于数据科学初学者而言,该项目提供了易于理解和使用的高质量代码实例,可以直接替换数据进行个人化的预测任务。SSA-RF回归预测模型展示了生物启发式算法与机器学习技术相结合的应用案例,在实际问题中能够实现更优的预测效果。
  • 米德(AOA-KELM),其在应用R2MAEMSE
    优质
    本文提出并研究了一种新的回归预测方法——基于阿基米德算法优化的核极限学习机(AOA-KELM),探讨其在处理复杂多变量数据时的表现,并通过R²、MAE和MSE指标评估模型性能。 阿基米德优化算法(Arithmetic Optimization Algorithm, AOA)是一种新型的全局优化方法,灵感来源于古希腊数学家阿基米德对浮力原理的研究。它在解决复杂优化问题时表现出良好的全局寻优能力和快速收敛速度,并特别适用于参数优化任务。在机器学习领域中,AOA可以用来寻找最佳超参数以提升模型性能。 核极限学习机(Kernel Extreme Learning Machine, KELM)是一种高效的单层神经网络模型,结合了支持向量机(SVM)的核技巧和极学习机(ELM)快速训练特性。KELM通过隐层节点随机初始化以及使用特定的核函数来处理非线性问题,并且其训练过程只需一次线性求解,避免了传统SVM中的迭代优化步骤。 在本项目中,AOA被应用于KELM参数优化任务上,创建了一种名为AOA-KELM的回归预测模型。该模型能够接受多变量输入数据集,在处理具有多个特征的实际问题时非常有用,例如股票价格预测、气象预报或工程系统行为分析等。 评价指标是衡量模型性能的关键因素之一,这里提到了以下几种: 1. R2(决定系数):用于度量预测值与实际值之间的相关性。R2的取值范围在0到1之间,达到1表示完美拟合。 2. MAE(平均绝对误差):计算预测结果和真实数据差值的绝对值的平均数,反映了模型预测的总体精度水平。 3. MSE(均方误差):与MAE类似但使用平方差来衡量。MSE对大偏差更加敏感。 4. RMSE(根均方误差):是MSE的结果开平方得到的一个度量标准,以原始数据单位表示误差大小。 5. MAPE(平均绝对百分比误差):用百分比形式表达预测结果和实际值之间的差异程度。适合于比较不同尺度的数据集。 项目文件包括: - AOA.m: 实现阿基米德优化算法的代码。 - kernel_matrix.m: 计算核矩阵函数,用于KELM中的非线性转换处理。 - main.m:主程序整合AOA和KELM训练流程的功能模块。 - initialization.m:初始化模型参数的辅助函数。 - fun.m:定义目标或适应度评价标准的脚本段落件。 - kelmTrain.m: KELM模型的训练过程代码实现; - kelmPredict.m: 预测功能代码段。 此外,还提供了一份《使用说明.txt》文档来指导用户如何运行和理解整个项目。同时提供了包含训练及测试数据集的data.xlsx文件以供参考或进一步实验研究之用。 通过本项目的学习与应用实践,参与者不仅可以掌握AOA优化算法的基本原理及其实际操作方法,还可以深入学习KELM的工作机制,并了解怎样将两者结合用于构建高效的回归预测模型。由于代码编写质量高且易于理解阅读,用户能够轻松替换数据以满足不同应用场景的需求。
  • XGBoost,涉SSA-XGBoost
    优质
    本文提出了一种结合麻雀搜索算法与XGBoost的回归预测方法(SSA-XGBoost),并详细探讨了其在处理多变量数据时的表现。通过深入分析该模型的各项性能指标,证明了其优越性和适用性。 麻雀算法(SSA)优化极限梯度提升树XGBoost回归预测模型,并应用于多变量输入场景。评价指标包括R2、MAE、MSE、RMSE和MAPE等,代码质量高且易于学习与数据替换。
  • 秃鹰LSSVMR2MAE
    优质
    本文提出了一种利用秃鹰搜索算法优化最小二乘支持向量机(LSSVM)进行回归预测的方法,并对其在多变量输入下的性能进行了基于R²和平均绝对误差(MAE)的详细评估。 本段落介绍了使用秃鹰算法(BES)优化最小二乘支持向量机回归预测的方法,并提出了BES-LSSVM多变量输入模型。评价指标包括R2、MAE、MSE、RMSE和MAPE等,代码质量高且便于学习与数据替换。
  • 森林时序SSA-RF),(R2, MAE, MSE, R)
    优质
    本文提出了一种结合麻雀搜索算法与随机森林的方法(SSA-RF)用于改进时序数据预测,详细探讨了该方法及其实验结果,并对R2、MAE、MSE和相关系数等关键性能指标进行了评估。 在时间序列预测领域内,SSA-RF(Sparrow Search Algorithm-Optimized Random Forest)结合了麻雀算法与随机森林的创新方法被广泛应用。麻雀算法是一种模仿麻雀觅食、躲避捕食者等行为的新优化策略,用于寻找问题的最佳解决方案;而随机森林则是一种强大的机器学习模型,由多个决策树构成,能够处理非线性关系和多重共线性,并适用于分类与回归任务。 SSA-RF首先利用麻雀算法来调整随机森林中的参数设置(如决策树的数量、每个节点划分特征数等),以期提升预测性能。该优化过程的目标在于最大化R2评分的同时最小化MAE(平均绝对误差)、MSE(均方误差)和RMSE(均方根误差)。这些评估指标是衡量模型准确性的关键标准。 R2评分表示决定系数,用于度量模型解释数据变异性的能力,其值介于0到1之间;一个完美的拟合模型的R2评分为1。MAE反映预测平均偏差的绝对值之和,直观地显示了预测误差的整体水平。MSE为所有样本预测误差平方的均值,而RMSE是MSE的平方根形式,两者对大数值误差特别敏感。此外,MAPE(平均绝对百分比误差)衡量的是实际值与预测值差额占总值比例的平均数,适用于对比不同规模数据集。 从代码结构来看,`regRF_train.m`和`regRF_predict.m`分别用于模型训练和做出预测的功能实现;而麻雀算法则由`SSA.m`文件完成。主程序通过调用这些函数来构建并执行模型的预测任务,这包括了目标函数在内的优化过程、参数初始化以及数据处理等步骤,其中`.mexw64`文件可能是编译后的C/C++代码,用于提高计算效率。 一个名为`windspeed.xls`的数据集提供了风速的时间序列样本以供训练和验证之用。用户可以将该模型应用于其他时间序列预测问题中,只需在数据处理部分替换相应的输入数据即可进行新的预测任务。 SSA-RF通过麻雀算法优化随机森林的参数设置来提高时间序列预测的效果,并提供了一套完整且高效的代码框架以供学习和应用参考。对于希望深入了解机器学习中的优化技术以及如何应用于时间序列分析的研究人员和技术专家而言,这是一个非常有价值的资源。
  • 最小二乘支持向(SSA-LSSVM),含(R2MAE等)
    优质
    本研究提出了一种结合麻雀搜索算法与最小二乘支持向量机的回归预测模型(SSA-LSSVM),适用于处理多变量数据,通过R²和均方误差(MAE)等标准验证了其优越性能。 麻雀算法(SSA)优化了最小二乘支持向量机回归预测方法(SSA-LSSVM)用于多变量输入模型的预测。评价指标包括R2、MAE、MSE、RMSE和MAPE等,代码质量非常高,易于学习并进行替换。