Advertisement

2022TI杯电子设计竞赛C题——智能小车基于openmv的循迹、岔路口和转弯口识别系统。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
在2022TI杯电子设计竞赛C题中,设计并开发了智能小车跟随行驶系统。该系统采用openmv芯片进行循迹功能,同时具备识别岔路口和转弯口的智能能力,能够准确计算并反馈中心偏移量以及偏离的角度。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 2022 TIC跟随行驶OpenMV
    优质
    本项目为2022年TI杯电子设计竞赛参赛作品,采用OpenMV摄像头实现智能小车的循迹、岔路口及转弯口自动识别功能。 2022TI杯电子设计竞赛C题要求设计一个智能小车跟随行驶系统,使用OpenMV进行循迹、识别岔路口及转弯口,并返回中心偏移量及偏离的角度。
  • OpenMV跟随行驶及其技术
    优质
    本项目开发了一种基于OpenMV摄像头的智能小车跟随行驶系统,具备路径跟踪、岔路及弯道自动识别与调整功能。 2022TI杯电子设计竞赛C题涉及智能小车跟随行驶系统的循迹、岔路口及转弯口的识别(使用openmv)。
  • OpenMVSTM32
    优质
    本项目设计了一款基于OpenMV摄像头与STM32微控制器的智能循迹小车,能够精准识别路线并自动跟随,适用于教育、竞赛及科研领域。 基于OpenMV 和STM32C8T6 的循迹小车原理是选取图片中部靠下的长方形区域为阈值化的ROI区域,读取黑线的中心位置进行PID运算。将PID运算结果通过通信协议传到STM32上,该协议标志位包括:小车控制高八位和小车控制低八位。在STM32中,OpenMV 的 PID 计算结果会被平方处理,并与基准速度相加,得到小车的占空比并输出。
  • 2020年TI大学生 C坡道行驶).rar
    优质
    本资源为2020年TI杯大学生电子设计竞赛中C题“坡道行驶电动小车”的参赛资料,包括循迹小车的设计方案、代码及文档等。 哔哩哔哩项目展示视频展示了利用TI的MSP430/MSP432平台设计制作的一个四轮电动小车。该小车能够沿着指定路线在坡道上自动循迹骑线行驶,且必须独立运行,不允许使用任何外部设备(包括电源)。小车及其电池总重量不得超过1.5kg,并且外形尺寸在地面投影面积不超过25cm×25cm。坡道由长约1m、宽约1m的细木工板制成,表面铺设黑白间隔为1cm×1cm的纸条作为路线指示;标记线起始段为直线并平行于木板两边,在坡顶转向90°后转弯。
  • OpenMVSTM32C8T6
    优质
    本项目设计了一款基于OpenMV摄像头和STM32C8T6微控制器的智能循迹小车,通过图像识别技术自动跟随预设路径行驶。 基于OpenMV 和 STM32C8T6 的循迹小车原理是选取图片中部靠下的长方形区域为阈值化的ROI区域,读取黑线的中心位置进行PID运算。将PID运算结果通过通信协议传输到STM32上,该协议包括标志位、小车控制高八位和低八位。在STM32上,OpenMV的PID计算结果会被平方处理并加上基准速度,得到小车的占空比,并输出。
  • 全国大学生FK210送药数字
    优质
    本项目参加全国大学生电子设计竞赛,设计并实现了一款基于K210处理器的智能送药小车,具备药品识别与精准配送功能。 全国大学生电子设计竞赛F题要求设计智能送药小车。
  • 2021年FOpenMV数字
    优质
    本项目为2021年电子设计竞赛F题解决方案,采用OpenMV摄像头进行图像采集与处理,并实现高效的数字识别算法,适用于各类数字检测场景。 使用OpenMV进行模板匹配以实现数字识别,准确率达到98.7%。项目包括亲自训练的灰度传感器寻迹功能,并为两辆小车分别编写了程序:小车一采用stm32f103ZET6作为主控芯片,而小车二则使用stm32f103RCT6。整个工程已经完善,实现了基础部分和发挥部分的功能。项目包含详细的小车主控板原理图、PCB设计以及器件连接说明,并附有详细的代码注释以便于理解。如果有任何疑问,可以私聊询问以获得技术支持。
  • 道操控技术
    优质
    本项目聚焦于智能车辆在复杂环境下的自主导航能力,着重研究路径识别与直弯道路段精准操控技术,旨在提升无人车的安全性和行驶效率。 智能车大赛中的路径识别与直弯道控制及部分C语言实现。
  • 优质
    本项目设计并实现了一款具备自主循迹功能的小车,利用传感器检测黑线路径,并通过编程控制电机转向与速度,适用于多种地面环境。 智能循迹小车的设计基于AT89C52单片机的智能控制系统实现了一辆能够自主识别黑色引导线并根据黑线走向快速稳定行驶的小车。该系统以AT89S52单片机为控制核心,通过红外传感器获取赛道信息,并以此对车辆的方向和速度进行精确调控。 设计目标在于独立开发一款具备基础智能化功能的简易小车,从而提升项目整体设计能力及掌握多通道多样化传感器综合控制系统的方法。同时,此研究也旨在顺应机电一体化技术在汽车智能领域的进步需求。 该智能小车硬件系统由电源管理模块、单片机控制核心、传感装置和电机驱动单元构成。其工作原理为利用红外发射接收对管检测赛道上的路径信息,并将这些数据传输给AT89C52,通过模糊推理算法计算出转向角度与行驶速度指令来操控小车行进。 硬件设计方面选用Atmel公司的AT89C52单片机作为控制单元。电路系统包括时钟、电源和复位等基础模块的构建,并特别强调了对整个模型车辆运作至关重要的供电管理机制,确保各个组成部分在运行过程中能获得必要的电能支持。 软件开发主要涉及控制理论的应用(如模糊推理)、算法设计及相应代码实现等内容。通过单片机处理轨迹信息并据此确定小车运动状态和方向是智能循迹的核心技术之一。 本项目旨在通过构建智能循迹小车,增强对机电一体化相关知识的理解与应用能力,并促进该领域在汽车智能化方面的进一步发展。研究成果将有助于培养和发展具备更高技术水平的机电一体化专业人才。
  • 单片机(含图).rar
    优质
    本资源提供了一种基于单片机控制的智能循迹小车的设计方案及电路图。内容详尽介绍硬件选型与软件编程,适用于机器人爱好者的参考学习。 在电子工程领域内,51单片机因其简单易用且资源丰富的特点而被广泛应用于初学者及专业开发者的项目之中。本篇文章将探讨如何利用这种微控制器设计一款能够自主沿设定路径行驶的智能循迹小车,并涵盖硬件电路设计、软件编程以及传感器应用等多个方面。 首先,我们来了解51单片机的核心组件。作为Intel公司推出的8位微处理器系列,它集成了CPU、内存、定时器计数器、并行IO端口和串行通信接口等关键模块。在智能小车的设计中,51单片机会充当控制中心的角色,负责处理传感器传来的信息,并管理电机及其他执行机构的动作。 本项目中的循迹系统是设计的重点之一,通常采用红外或磁性传感器来识别路面的黑白线条变化。这些传感器将检测到的信息转换为电信号并传输给51单片机进行进一步分析和决策。在我们的方案中,多个分布于小车前端的红外反射传感器被用来捕捉路径上的颜色差异。 从硬件设计角度来看,需要把上述提到的各种传感器连接至51单片机的输入端口,并通过PWM(脉宽调制)技术来控制电机的速度与转向方向。作为模拟输出的一种方式,PWM能够根据不同的需求调整电压平均值从而精确地操控电机转速。此外,在两者之间还设置有专门用于放大信号并驱动电机工作的电机驱动器。 软件层面,则需要编写C语言程序以实现对小车的智能管理功能。这包括初始化硬件、读取传感器数据、解析信息来确定行驶方向,以及通过PWM技术调整速度等步骤。其中PID(比例-积分-微分)控制算法通常被用于优化车辆在路径上的行走精度。 电路图也是整个设计过程中的重要环节之一,它展示了所有元件之间的连接关系和布局方式。该图表中应包含电源模块、传感器接口、单片机核心组件以及电机驱动电路等部分,并且还需要加入必要的保护机制以防止过载或短路等问题的发生。通过仔细研究这些图纸,可以更好地理解各个部件的功能及其相互作用。 实际制作阶段则涉及硬件组装和调试工作。安装过程中需要注意元件的正确位置与方向安排;而后续的测试环节需要逐一验证各项功能是否正常运行,例如传感器能否准确识别路径、单片机是否能有效处理信号以及电机响应速度等指标的表现情况。 综上所述,在基于51单片机构建智能循迹小车项目的过程中,我们将学习到有关该微控制器的基本原理与应用方法、各种类型的传感器技术、对直流电动机构的控制策略、PWM调速技巧、C语言编程技能及PID调节算法等内容。这不仅有助于提高工程师的实际操作能力,同时也为理解和开发更加复杂的嵌入式系统奠定了坚实的基础。