Advertisement

通过八点算法计算基础矩阵,进而求得本质矩阵和相机外参。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
通过运用改进的八点算法,能够准确地计算出基础矩阵,并以此推导出本质矩阵以及相机的外部参数。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优化,并
    优质
    本研究采用八点算法优化基础矩阵计算,精确求解本质矩阵与相机外参,提升计算机视觉中的立体匹配精度。 使用改进的八点算法求解基础矩阵,进而计算本质矩阵及相机外参。
  • 于改解及其在中的应用
    优质
    本文提出了一种基于改进八点算法的方法来解决基础矩阵问题,并探讨了该方法在计算本质矩阵及相机外部参数中的应用效果。 改进的八点算法用于求解基础矩阵,再通过该基础矩阵计算本质矩阵及相机外参。
  • 优质
    简介:本文介绍了用于计算基础矩阵的八点算法,该方法在计算机视觉中被广泛应用于从两张图像确定摄像机相对位姿。通过选取最少八个对应点对,此算法能够有效地估计基础矩阵,从而实现立体视觉中的重要任务如三维重建和运动恢复结构(SfM)。 求基础矩阵的经典论文,8点法,欢迎下载。
  • 的推导
    优质
    本文详细探讨了计算机视觉中的两个关键概念——本质矩阵和基础矩阵。通过严谨的数学推导,阐明两者间的联系及其在立体视觉中的应用价值。 ### 本质矩阵与基础矩阵推导过程详解 在计算机视觉领域中理解两幅图像间的几何关系至关重要。本段落将深入探讨本质矩阵与基础矩阵的概念及其推导过程,并通过实例解析帮助读者更好地掌握这些核心概念。 #### 基本概念 双目立体视觉系统通常会遇到两个摄像机之间的相对位置关系问题,为此引入了**本质矩阵(Essential Matrix)**和**基础矩阵(Fundamental Matrix)**这两个关键概念。这两种矩阵能够编码两视图中的外极几何(Epipolar Geometry),为后续的匹配提供重要线索。 #### 外极几何 **外极几何**描述两个不同摄像机所拍摄图像之间点与线的关系,具体来说: - **外极点(Epipole)**:一个摄像机在另一个摄像机图像中看到的位置。 - **外极线(Epipolar Line)**:给定一个摄像机图像中的点,在另一幅图中该点对应的搜索路径。 例如,如果在一幅图像1中有某个点( p ),那么这幅图像2中与此对应的那个点必须位于一条特定的直线上。这条直线就是外极线。 #### 本质矩阵 **本质矩阵**是连接两个摄像机坐标系旋转和平移参数的一种矩阵表示形式: \[ E = [t]_× R \] 其中\(R\)代表第一个相机到第二个相机的旋转变换,\( t \)为平移向量。这里的\([t]_×\)符号表示\( t \)的反对称矩阵形式。本质矩阵具有以下性质: - 排列等级2:意味着它拥有左零空间和右零空间。 - 仅依赖于摄像机外参(即旋转和平移),与内参无关。 #### 基础矩阵 **基础矩阵**是一种更通用的形式,可以处理非理想情况下的相机校准问题,包括不同的焦距以及主点偏移等。其定义为: \[ F = K_2^{-T} E K_1^{-1} \] 其中\(K_1\)和\(K_2\)分别是两个摄像机的内参矩阵。基础矩阵同样具有以下性质: - 排列等级2。 - 既依赖于相机外参也依赖于内参。 #### Longuet-Higgins方程 Longuet-Higgins方程是描述两台摄像机之间关系的重要公式之一,它关联三维空间中的观测光线与图像平面上的二维点。具体形式如下: \[ (l_1^T x_2)(l_2^T x_1) - (l_1^T x_1)(l_2^T x_2) = 0 \] 这里\( l_1 \)和\( l_2 \)分别是两个摄像机图像上的外极线,而 \(x_1\) 和 \(x_2\) 是对应图中的点。这个方程的重要性在于它能将三维空间的信息映射到二维图像上,从而通过图像信息反推三维几何关系。 #### 外极线的数学表示 利用齐次坐标可以方便地表达外极线:假设\( l \)是一条直线,则可用齐次坐标表示为 \(l = (a, b, c)^T\)。根据外极几何原理,对于任意一点\( p \),若其属于左侧图像中的某条外极线\( l_l \),则有: \[ l_l^T p_l = 0 \] 同理,如果该点属于右侧图像中的一条外极线 \(l_r\), 则满足以下条件: \[ l_r^T p_r = 0 \] ### 结论 通过以上讨论可以看出本质矩阵和基础矩阵在描述两幅图之间几何关系方面发挥着重要作用。它们不仅提供了理论框架,还为实际应用中的立体匹配等问题提供了解决方案。理解这些矩阵的具体含义及其背后的数学原理对于深入研究计算机视觉领域至关重要。
  • C++源代码___
    优质
    本项目提供一系列高效的C++源码实现,用于执行常见的矩阵运算操作。包括但不限于加法、减法、乘法以及转置等基础功能,适用于需要进行线性代数计算的各类应用。 该代码包括矩阵的加减、乘法以及逆矩阵的计算。
  • 知识及
    优质
    本课程涵盖矩阵基本概念、运算规则及其应用,并深入讲解矩阵求导技巧与方法,适合数学和计算机科学爱好者学习。 这段文字介绍了矩阵的基本知识以及如何进行矩阵求导,内容很实用。这是之前从硬盘里找到的资料,应该是以前下载保存下来的。
  • FPGA逆运_Matrix_inv.zip_FPGA逆_逆_fpga
    优质
    本资源包提供了一种在FPGA上实现矩阵求逆运算的方法和代码。包含Matrix_inv算法及其应用实例,适合学习与研究FPGA上的线性代数计算。 基于FPGA的矩阵求逆运算适用于Xilinx V6板卡。
  • 乘运收藏
    优质
    本文深入解析矩阵点乘运算的概念、操作步骤及应用场景,并提供实用示例和代码实现,是学习线性代数与机器学习的重要资料。 经过一番努力,我找到了一个关于矩阵点乘运算的例子,并稍作修改后可以用于自己的项目。这个例子值得参考一下。
  • 于8视觉OpenCV代码
    优质
    本简介提供了一段实现基础矩阵计算的OpenCV代码,采用八点算法进行计算,适用于计算机视觉领域中的摄像机标定和 stereo vision 等应用。 ### 8点算法计算基础矩阵(计算机视觉)OpenCV代码详解 #### 引言 在计算机视觉领域,为了估计两个图像之间的几何关系,常用的一种方法是通过基础矩阵来实现。该方法能帮助我们理解两幅图像间的对应关系,并且对于相机的校准以及三维重建具有重要意义。本段落将详细介绍如何使用8点算法计算基础矩阵,并通过OpenCV进行仿真实现。 #### 二、8点算法原理 8点算法是一种用于有效计算基础矩阵的方法,基于线性最小二乘法,通过对匹配点对构建线性方程组来求解未知元素。其基本思想是:利用至少八个对应点对形成一个超定的线性方程组,并通过奇异值分解(SVD)方法求解该系统。 具体步骤如下: 1. **数据标准化**:为了提高计算精度,首先需要对输入的点进行标准化处理。 2. **构建线性系统**:根据标准化后的对应点构造一个超定的线性方程组。 3. **求解基础矩阵**:利用SVD方法求解上述线性方程组。 #### 三、代码解析 接下来,我们将详细解析给定代码片段中的关键部分。 ```cpp int CvFMEstimator::run8Point(const CvMat* _m1, const CvMat* _m2, CvMat* _fmatrix) { ...代码省略... } ``` 1. **输入参数解释**: - `_m1` 和 `_m2` 分别表示两幅图像中的匹配点集合,每个匹配点由 `CvPoint2D64f` 类型定义。 - `_fmatrix` 表示输出的基础矩阵。 2. **数据标准化**: - 计算每幅图像中所有点的中心位置(`m0c` 和 `m1c`)。 - 计算平均距离并根据此计算缩放因子,用于后续的标准化操作。 ```cpp double t = 1 / count; m0c.x *= t; m0c.y *= t; m1c.x *= t; m1c.y *= t; ``` - 根据缩放因子对原始点集进行标准化处理。 3. **构建线性系统**: - 遍历每一对标准化后的对应点,构建线性方程组 `A`。其中,`A` 是一个9×9的矩阵,每一行代表一个线性方程。 ```cpp for (int i = 0; i < count; i++) { 计算标准化后的坐标 double x0 = (m1[i].x - m0c.x) * scale0; double y0 = (m1[i].y - m0c.y) * scale0; double x1 = (m2[i].x - m1c.x) * scale1; double y1 = (m2[i].y - m1c.y) * scale1; double r[9] = { x1*x0, x1*y0, x1, y1*x0, y1*y0, y1, x0, y0, 1 }; 更新 A 矩阵 for (int j = 0; j < 9; j++) for (int k = 0; k < 9; k++) a[j * 9 + k] += r[j]*r[k]; } ``` 4. **求解基础矩阵**: - 利用SVD方法求解上述线性方程组的最小二乘解。 - 选择 SVD 后的最小非零奇异值对应的右奇异向量作为基础矩阵的一个近似。 ```cpp cvSVD(&A, &W, 0, &V, CV_SVD_MODIFY_A + CV_SVD_V_T); ``` - 为了确保基础矩阵的秩为2,需要进一步对其进行奇异值分解,并将最小的奇异值置零。 ```cpp F0 = cvMat(3, 3, CV_64F, v + 9 * 8); 取最后一列作为方程 Ax=0 的解 使 F0 成为秩2矩阵 W = V; for (int i = 0; i < count-1; ++i) w[i] /= w[count - 1]; } ``` 5. **输出结果**: - 将计算得到的基础矩阵存储到 `_fmatrix` 中。 #### 四、总结 利用8点算法结合OpenCV库,可以有效地求解基础矩阵,并应用于图像匹配和三维重建等计算机视觉任务中。该方法不仅提高了精度,还简化了实现过程。
  • 下三角的详细
    优质
    本文详细介绍了一种计算下三角矩阵逆矩阵的有效算法。通过逐步解析,为读者提供了清晰的操作步骤和数学原理,适用于数值分析与工程应用中的相关问题解决。 矩阵计算中的第一次实验题要求计算下三角矩阵的逆矩阵,并提供详细的算法实现以及所有测试数据与运行结果。