该文介绍了一种针对海上风力发电系统的创新性并网检测技术,旨在提升风电接入电网的安全性和效率。
随着全球工业化进程的加速,能源短缺与气候环境问题日益严重。作为可再生能源的重要组成部分,风能发电技术得到了快速发展。海上风电相较于陆上风电具有节约土地资源、减少噪声污染以及拥有更丰富风能等优势,因此成为沿海国家新的重点发展方向。
根据中国“十二五”可再生能源规划,到2015年我国海上风电装机容量将达到500万千瓦。然而,随着海上风电规模的不断扩大,并网性能成为了影响电网安全稳定运行的关键因素之一。国际上掌握并网检测技术的机构较少且保护严格,而国内海上风机的研发起步较晚,在借鉴国外经验的同时,具备并网检测能力的机构数量有限。在此背景下,开展相关研究显得尤为重要。
为了确保风电场的安全稳定,《风电场接入电力系统技术规定》要求风电机组在电压跌落至额定值20%时能够维持运行625ms。2011年张北和酒泉风电基地发生的大规模脱网事故使得并网检测成为参标的必要条件。
目前,国家风电并网检测基地可以进行包括电网适应性、电气模型、电能质量等五项测试,其中低压穿越能力是必备项目。现有低电压穿越测试装置主要有阻抗分压形式、变压器方案和电力电子变换三种方式。
针对现有技术的局限,研究团队提出了一种新型综合测试方法,旨在提高检测全面性和准确性。该方案不仅关注低压穿越能力,还考虑系统发电效率、供电质量以及控制保护性能等多方面需求。通过对海上风电并网两种主要线路(集中式和分散式)及其对大电网的影响进行分析,并结合实际应用和技术要求设计了一套适用于小功率及大规模系统的检测技术。
该方案的核心在于使用新型电力电子变换器模拟电压跌落情况,相比传统阻抗分压或变压器方法具有更高的灵活性和精确度。通过优化控制算法提高了系统响应速度和计算简便性,确保了实时性和可靠性。
为了验证新技术的有效性,研究团队利用PSCAD软件进行了详细的仿真分析。结果表明该技术不仅能够准确模拟电网故障情况,在低复杂度下实现了高精度的检测效果,并适用于不同规模的海上风电系统,为后续现场测试提供了技术支持。
这种新型并网检测技术有助于提升海上风电系统的整体性能和稳定性,未来随着行业的不断发展,其应用前景将十分广阔。