Advertisement

kriging.js中的克里金算法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:JS


简介:
简介:Kriging.js是一款用于实现克里金插值算法的JavaScript库,适用于地理空间数据分析和建模。此算法能精确预测未观测地点的数据值,在环境科学、地质学及城市规划等领域应用广泛。 克里金算法是一种用于空间数据插值的统计方法,在地质学、环境科学等领域有广泛应用。该算法通过建立一个基于邻近观测点的数据模型来预测未知地点的数据值,能够提供结果的标准误差估计,有助于评估预测的不确定性。这种方法的核心在于利用变差函数分析确定样本间的相关性,并据此构建最优线性无偏预测器进行空间数据插值。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • kriging.js
    优质
    简介:Kriging.js是一款用于实现克里金插值算法的JavaScript库,适用于地理空间数据分析和建模。此算法能精确预测未观测地点的数据值,在环境科学、地质学及城市规划等领域应用广泛。 克里金算法是一种用于空间数据插值的统计方法,在地质学、环境科学等领域有广泛应用。该算法通过建立一个基于邻近观测点的数据模型来预测未知地点的数据值,能够提供结果的标准误差估计,有助于评估预测的不确定性。这种方法的核心在于利用变差函数分析确定样本间的相关性,并据此构建最优线性无偏预测器进行空间数据插值。
  • KrigingCore_java_插值实现__
    优质
    KrigingCore_java 是一个专注于克里金插值算法实现的Java项目,提供高效准确的空间数据分析解决方案。该项目基于克里金方法,用于地理统计学中的预测和估算问题。 普通克里金算法实现,使用Java进行的一个普通克里金算法实现,本代码开源。
  • 插值_matlab_刚态_插值
    优质
    克里金插值是一种基于地统计学的空间插值技术,在Matlab中实现广泛应用于地质、环境科学等领域,通过该方法可以进行数据的最优无偏估计和空间预测。 本压缩包基于MATLAB的克里金插值法,包含相关说明和示例。
  • Matlab插值(Kriging).rar_Kriging插值与_matlab插值
    优质
    本资源包提供详细的Matlab代码和教程,用于执行Kriging插值及克里金空间数据分析方法。适用于地质统计学、环境科学等领域中复杂数据的精确预测与建模。 克里金加权插值法使用方便,参数设定简单,容易实现。
  • C++源码
    优质
    本项目提供了一个用C++编写的实现克里金插值方法的开源代码库。克里金刚是一种用于空间数据分析和地质统计学中的高级预测技术。此代码旨在为开发者与研究人员提供一个高效、灵活的基础框架,以便于探索及应用该算法在不同场景下的潜力。 本段落件概述了构成您的克里金应用的各个文件中的内容。
  • (Kriging插值
    优质
    克里金方法,又称Kriging插值算法,是一种基于地质统计学的空间数据分析技术,用于预测未知地点的数据值,广泛应用于地理信息系统和工程设计中。 克里金方法(Kriging)是一种空间插值技术,用于通过已知的数据点来估算未知位置的数值。这种方法在地理信息系统、环境科学等领域有着广泛的应用。克里金插值算法基于统计学原理,能够有效地预测未采样地点的空间数据,并且可以提供估计误差的概率分布信息。
  • 插值
    优质
    克里金插值法是一种地质统计学方法,用于基于空间自相关性进行数据插值和预测。它在资源勘探、环境科学等领域广泛应用。 克里金插值(Kriging Interpolation)是一种在地理信息系统(GIS)和地球科学领域广泛应用的统计插值方法,由南非矿业工程师丹尼尔·嘉比·克里金(Danie G. Krige)于20世纪50年代提出。该方法通过分析数据的空间相关性来预测未采样点上的变量值,并实现空间连续性的最佳估计。这种方法特别适用于处理具有高度空间变异性且观测数据稀疏的情况。 在克里金插值中,变异函数(Variogram)是一个关键概念,用于衡量同一变量在不同位置之间的差异程度。线性拟合球状模型是变异函数的一种形式,通常用来描述数据的空间变化模式,在这种模型下,随着距离的增加,数据间的差异以一定速度增长,并最终达到饱和值。通过使用观测数据进行参数估计的过程(即线性拟合),可以确定最佳变程、nugget效应和饱和值。 MATLAB 是一种广泛用于科学计算的强大编程环境,包括克里金插值的应用。在名为“variogram.m”的文件中可能包含了计算变异函数的MATLAB代码,该脚本通常会执行以下步骤: 1. 数据预处理:导入观测数据,并进行清洗以去除异常值。 2. 变异函数计算:根据观测数据来确定对角线和非对角线元素之间的差值,进而计算出半变异函数。 3. 模型拟合:通过使用诸如线性回归等方法来匹配距离与半变异函数的关系,并据此估计模型参数。 4. 插值预测:应用得到的变异函数模型以及克里金公式进行插值得到未知点上的变量值。 5. 结果可视化:将插值结果以图表形式展示出来,如等高线图或栅格图。 文件“license.txt”可能包含MATLAB代码的相关许可协议信息。此外,存在多种类型的克里金方法(例如简单克里金、普通克里金和泛克里金),每种类型都有其特定的应用场景及优缺点,在实际应用中选择合适的插值技术以及变异函数模型至关重要。 总结来说,“克里金插值”是一种基于变异函数理论的高级空间数据预测技术,借助MATLAB等工具可以实现对复杂地理现象的有效建模和分析。通过对“variogram.m”的深入学习与理解,我们可以掌握这一方法的核心原理及其应用技巧。
  • Kriging_插值_matlab__Kriging_kringing_kringinginr_
    优质
    简介:Kriging(克里金)是一种空间数据插值技术,用于根据有限样本预测连续变量的空间分布。本文档介绍如何使用MATLAB实现克里金插值方法,探讨其在地理统计分析中的应用。关键词包括Kriging、克里金插值、matlab。 克里金插值是一种广泛应用于地理信息系统(GIS)中的地统计方法,用于估计空间数据的连续性,并填充数据空白区域。这种方法基于空间变异性的概念,能够根据已知的数据点预测未知区域的价值,并考虑了数据之间的空间相关性。MATLAB作为强大的数值计算和数据分析工具,提供了克里金插值的功能,方便用户进行各种复杂的空间数据分析。 标题中的“Kriging_kriging_kringinginr”可能是对克里金插值的不同表述或变体,“inr”可能代表某种特定的输入格式。而“克里金插值_matlab_克里金”明确指出这是关于MATLAB中实现的克里金插值方法。 在进行克里金插值时,主要步骤包括: 1. 数据准备:收集具有空间坐标的观测数据,例如土壤湿度、地形高度等。 2. 协方差模型选择:选取合适的协方差函数来描述这些数据的空间相关性。常见的有球状、指数和高斯模型等。 3. 参数估计:根据已有的观测数据分析并确定所选协方差模型的参数值,比如半变异函数的范围与尺度。 4. 计算克里金权重:基于选择的协方差模型及数据点的位置信息来计算每个观测位置对未知区域贡献的重要性系数(即权重)。 5. 插值预测:利用这些权重和已知的数据点价值来进行未知区域的价值估计。 6. 变异性图谱创建:生成半变异函数图像以直观展示空间结构与变化趋势。 7. 误差评估:克里金插值还包括对预测结果不确定性的量化,即提供一个关于错误的估算。 MATLAB中的`kriging`函数可用于实现上述步骤。此功能允许用户通过输入观测数据、坐标以及其他必要参数来执行插值操作,并返回相应的预测结果和不确定性估计。此外,还可能需要使用其他辅助工具如`fitcovariance`来进行协方差模型参数的估算以及利用`kriginggrid`在特定区域内进行网格化处理。 综上所述,通过MATLAB中的克里金插值功能,用户可以高效地分析大量空间数据,并获得精确的空间分布特征。这对于地理学家、环境科学家和地质学家等研究者来说是非常重要的数据分析工具。
  • C# 插值AE方
    优质
    本篇文章介绍了一种基于C#实现的克里金插值算法增强版(AE)的方法,通过此技术可以有效提高空间数据分析和预测的准确性。 基于C#进行的Arc Engine二次开发,主要涉及克里金空间插值分析。