Advertisement

改良的基于样本块的图像修复技术

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究提出了一种改进的基于样本块的图像修复方法,通过优化搜索算法和融合策略,有效提升了受损区域的修复质量与自然度。 在研究Criminisi修复算法的基础上,提出了改进的基于样本块的图像修复方法。根据待修复区域面积及其纹理特征自适应选取样本块大小,提高修复速度;采用新的数据项并优化优先权公式以避免阶梯效应;重新定义置信度更新方式,并引入曲率距离减少误差累积,提升修复顺序准确性。实验表明改进的方法能够有效改善图像的修复效果并缩短所需时间。 【图像修复】是计算机视觉领域的重要技术之一,旨在恢复缺失或损坏的部分使它们看起来像原本完整的部分。传统方法分为基于偏微分方程和纹理重复性两类:前者利用扩散机制适用于小范围损伤但可能产生模糊;后者依赖于纹理的重复特性处理大范围损伤但结构不连续问题。 2003年,Criminisi等人提出了【样本块匹配修复算法】。该方法通过寻找最佳匹配的样本块填充缺失区域,保持自然过渡效果。其核心是依据置信度和数据项决定优先级进行逐点修补。 然而,原算法存在固定大小样本块效率低下、优先权计算不准以及结构信息利用不足等问题。为解决这些问题: 1. **自适应选择模板块大小**:根据图像纹理特征及损伤面积动态调整样本块尺寸,通过实验拟合建立了优化修复速度和质量的关系模型。 2. **改进优先级公式**:修正了置信度下降时影响修补顺序准确性的计算方式,确保结构信息的充分利用避免阶梯效应。 此外还重新定义了置信度更新机制,并引入曲率距离降低误差累积。实验表明该方法在保持良好修复效果的同时显著缩短了处理时间。 本段落通过优化Criminisi算法中的样本块选择及优先级计算提高了图像修复效率和质量,对于各种类型和规模的损伤具有较高实用价值,有助于推动相关技术的发展。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究提出了一种改进的基于样本块的图像修复方法,通过优化搜索算法和融合策略,有效提升了受损区域的修复质量与自然度。 在研究Criminisi修复算法的基础上,提出了改进的基于样本块的图像修复方法。根据待修复区域面积及其纹理特征自适应选取样本块大小,提高修复速度;采用新的数据项并优化优先权公式以避免阶梯效应;重新定义置信度更新方式,并引入曲率距离减少误差累积,提升修复顺序准确性。实验表明改进的方法能够有效改善图像的修复效果并缩短所需时间。 【图像修复】是计算机视觉领域的重要技术之一,旨在恢复缺失或损坏的部分使它们看起来像原本完整的部分。传统方法分为基于偏微分方程和纹理重复性两类:前者利用扩散机制适用于小范围损伤但可能产生模糊;后者依赖于纹理的重复特性处理大范围损伤但结构不连续问题。 2003年,Criminisi等人提出了【样本块匹配修复算法】。该方法通过寻找最佳匹配的样本块填充缺失区域,保持自然过渡效果。其核心是依据置信度和数据项决定优先级进行逐点修补。 然而,原算法存在固定大小样本块效率低下、优先权计算不准以及结构信息利用不足等问题。为解决这些问题: 1. **自适应选择模板块大小**:根据图像纹理特征及损伤面积动态调整样本块尺寸,通过实验拟合建立了优化修复速度和质量的关系模型。 2. **改进优先级公式**:修正了置信度下降时影响修补顺序准确性的计算方式,确保结构信息的充分利用避免阶梯效应。 此外还重新定义了置信度更新机制,并引入曲率距离降低误差累积。实验表明该方法在保持良好修复效果的同时显著缩短了处理时间。 本段落通过优化Criminisi算法中的样本块选择及优先级计算提高了图像修复效率和质量,对于各种类型和规模的损伤具有较高实用价值,有助于推动相关技术的发展。
  • 一种数字
    优质
    本研究提出了一种改进的数字图像修复技术,通过先进的算法和模型优化,显著提升了受损或模糊图像的恢复效果与质量。 本段落重点介绍了一种改进的数字图像修复方法。该方法针对包含划痕和缺失区域的数字图像进行修复,并且提出了一种基于改进的BSCB模型和改进的Criminisi算法的新图像修复算法。首先,利用改进的BSCB模型对划痕进行处理,随后通过改进的Criminisi算法来修复缺失区域。实验结果表明,所提方法在数字图像修复领域比单独使用BSCB模型或Criminisi算法的效果更佳。 为了详细解释相关知识点,从以下几个方面展开: 1. 数字图像修复技术概述: 数字图像修复是通过特定的算法和技术手段对破损、缺失或者存在噪声的数字图像进行复原的过程。这一过程在艺术作品恢复、医学成像及卫星影像分析等领域有着广泛应用。随着技术的发展,数字图像修复已从手动操作演进到半自动和全自动方法。 2. BSCB模型: 双边统计分类(Bilateral Statistical Classification)模型是一种用于图像修复的统计工具,依据像素间的统计特性来预测并修正受损区域的值,并利用局部结构与纹理信息进行处理。其优势在于既能保持图像平滑性又能保留细节特征。 3. Criminisi算法: 这是一种基于样本传输技术的图像修复方法,它通过考虑图像中的局部结构信息并通过样本来指导修复过程。Criminisi算法在复杂结构和纹理丰富的图象修补中表现出色,并被广泛应用于该领域。 4. 改进的BSCB模型与改进的Criminisi算法: 文中提到的方法是对现有技术进行了优化,具体细节未详述,但可以推测这些优化可能涉及提高效率、增强特定损伤处理能力或改善修复效果等方面。 5. 实验结果分析: 文章通过实验验证了所提方法的有效性。结果显示新算法在图像修补方面明显优于单独使用BSCB模型和Criminisi算法。这表明改进后的技术能够在保留结构与纹理细节的同时提供更好的修复性能。 6. 关键词理解: 文中列出了一些关键术语,如“数字图像修复”、“BSCB模型”及“Criminisi算法”。这些词汇帮助我们更好地理解和把握整个研究的内容和框架。
  • Criminisi算法快速
    优质
    本研究提出了一种改进的Criminisi算法,用于高效修复受损或缺失的图像区域。通过优化算法参数和引入新的插值策略,显著提升了图像恢复的速度与质量,为图像处理领域提供了创新解决方案。 本段落介绍了一种基于改进的Criminisi算法进行快速图像恢复的方法。传统Criminisi算法在处理大型受损区域时存在计算量大、耗时长以及修复效果模糊的问题,因此文中提出了一种优化方案以解决这些问题。 传统的图像修复技术主要分为结构修复方法和纹理合成方法两大类。前者适用于对图像的结构信息进行修复,如BSCB模型、TV(Total Variation)模型和CDD(Curvature Driven Diffusion)模型等;后者则更侧重于利用已有的纹理信息来预测并填补受损区域。 改进后的算法通过优化优先级计算方法,并采用局部搜索策略寻找最优匹配块,从而在提高修复速度的同时保持图像结构的完整性。实验结果表明,该算法不仅显著加快了修复过程的速度,还提升了视觉效果的质量和自然度。 纹理合成技术是实现这一目标的关键手段之一,它利用已有的纹理信息来预测并填补受损区域的像素值,以达到逼真的恢复效果。在大型损伤处理中,局部搜索方法通过寻找待修区域附近的最佳匹配块作为修复依据,从而避免了耗时且低效的整体搜索过程。 优先级计算是图像修复中的一个重要步骤,它决定了哪些部分应该首先被修复。文中提出的改进算法进一步优化了这一环节,并将其转化为更精确的索引形式,以指导整个修复流程更为高效地进行。 本段落的研究对计算机图形学、视觉等领域具有重要的理论和实践价值。在文化遗产保护、电影电视后期制作特效以及虚拟现实等众多应用场景中,图像修复技术均扮演着不可或缺的角色。通过改进后的Criminisi算法,在确保高质量恢复的前提下大幅提升了工作效率,这对于相关行业的生产力提升及创新工作有着重要意义。
  • CDD算法
    优质
    本研究提出了一种创新的基于内容和方向扩散(CDD)的图像修复算法,旨在高效准确地恢复受损或缺失的图像区域。通过模拟人类视觉感知机制,该方法能够生成自然流畅、细节丰富的修补效果,在保持周围纹理连续性的同时,有效减少人工痕迹。此技术在数字艺术创作与老照片修复等领域展现出广泛应用前景。 CDD图像修复算法是数字图像处理领域的一种技术,用于恢复或修复破损、缺失或受损的图像部分。CDD代表曲率驱动扩散(Curvature-Driven Diffusions),它利用了图像局部几何信息来填充空洞或修复损坏区域的方法。本压缩包中包含了实现CDD算法的MATLAB程序(CDD.m)以及相关的示例图像,用户可以直接运行这些文件并理解其工作原理。 MATLAB是一种广泛使用的编程环境,特别适合于数值计算和科学可视化,包括图像处理。在这个案例中,核心代码文件是CDD.m,它实现了CDD算法的逻辑,并能够处理图像修复任务。通过修改输入参数和调用这个函数,用户可以对不同类型的图像进行修复。 压缩包中的Nontexture Inpainting by Curvature-Driven Diffusions.pdf可能是一篇详细的学术论文,阐述了CDD算法的理论基础、实现过程以及实验结果。这篇论文通常会介绍算法的独特之处、优势和局限性,并且可能会包含与其他相关算法的比较分析。通过阅读该文档,用户可以深入理解CDD的工作原理及在实际应用中的优化方法。 此外,压缩包中还提供了一张待修复的原始图像(yuan.png)。利用MATLAB代码对这张图片进行处理后,结果会保存为CDD修复后.bmp文件。对比原图和修复后的图像可以帮助用户直观地了解CDD算法的效果。 CDD的核心思想在于通过分析边缘曲率来推断缺失区域的纹理与结构,在修复过程中依据局部特性(如边缘连续性和曲率)扩散像素值,从而逐渐填充受损区域。这种方法尤其适用于无纹理区段的处理,并能较好保持图像的整体结构和连贯性。 在许多领域中,包括旧照片修复、视频处理及医学影像分析等,图像修复技术都有着广泛的应用前景。CDD算法因其对边缘与结构精确处理的能力,在图像修复方面提供了一种新的解决方案。通过学习这种算法,不仅可以提升个人的专业知识水平,还能激发对于其他相关领域的研究兴趣和开发潜力。
  • Criminisi算法 (2014年)
    优质
    本文提出了一种基于改良Criminisi算法的高效图像修复方法,通过优化算法细节提升图像恢复质量和效率。研究旨在解决传统算法在复杂背景下的修复不足问题。 为了克服Criminisi算法在图像修复过程中难以达到理想效果以及耗时过长的问题,我们提出了一种改进的Criminisi算法。该方法通过优化优先级计算来确定最佳待修复区域,并改进了最优匹配块搜索策略以找到更合适的替代像素。此外,还引入了一种新的置信值更新方式,旨在进一步提高图像修复的质量。经过仿真实验验证,结果显示改进后的算法不仅显著提升了图像的修复效果,而且大幅缩短了处理时间,从而提高了整体效率。
  • criminisi.rar_Criminisi算法_Matlab__Matlab算法
    优质
    本资源提供Criminisi算法在MATLAB平台下的实现代码,用于进行图像修复研究。利用该算法可以有效解决图像中的缺失或损坏部分恢复问题,适用于科研与学习用途。 Criminisi图像修复算法是一种经典的图像修复方法,在MATLAB中有相应的实现。
  • BSCB算法
    优质
    本研究提出了一种新颖的图像恢复算法,利用BSCB模型有效修复受损图像。通过深度学习方法,该算法能够准确恢复细节,提升图像质量,在多种数据集上表现优越。 文件包含完整的BSCB算法的Matlab程序和示例图,可以直接运行使用。
  • 优质
    本研究提出了一种基于样本的图片修复方法,利用深度学习技术从大量图像中自动选择相似区域进行高效修补,以达到自然无缝的效果。此方法尤其适用于处理较大尺寸的物体缺失或损坏情况,在保持周围纹理和结构一致性方面表现出色。 使用MATLAB编程,直接利用C(p)作为边界点权值对给出的两幅图像进行修复;其中目标区域为红色标注区域。实验的主要任务是移除该红色区域,并恢复图像。
  • TV模型彩色
    优质
    本文提出了一种基于TV模型的彩色图像修复方法,通过优化算法有效恢复受损或缺失区域的颜色与纹理信息,实现高质量的图像修复。 使用TV模型对彩色破损图像进行修复的方法是基于受损区域周围的有效信息(包括灰度及纹理)来自动修补这些区域的算法。从数学的角度来看,图像修复的目标就是利用空白区域周围的已知数据填充缺失部分。具体而言,首先需要确定待修补的具体范围,然后通过分析该范围内像素点的信息特征,使用相应的图像处理技术恢复受损区域的内容。
  • 主动轮廓模型分割
    优质
    本研究提出了一种基于主动轮廓模型改进的图像分割方法,旨在提高复杂背景下的目标识别精度和效率,适用于医疗影像分析、计算机视觉等领域。 主动轮廓模型在计算机视觉与图像处理领域被广泛应用,主要用于图像分割、目标跟踪及边缘检测等方面。该技术最初由Kass等人于1987年提出,并被称为蛇模型或主动轮廓模型,其核心在于通过能量最小化驱动初始轮廓向具有特征的区域靠近以实现精确分割。 然而,传统的蛇模型存在一些局限性:首先,在初始化阶段对起始位置的要求极高;其次,在处理过程中可能会遗漏重要信息(边界泄漏现象);此外,它在面对凹形边缘时表现不佳。为解决这些问题,Xu提出了梯度向量流(GVF) 蛇模型来扩大初始轮廓的捕获范围并增强其捕捉凹形边界的性能。之后,Xu和Prince进一步发展了广义梯度向量流 (GGVF) 模型,并加入两个可调权重系数以优化蛇模型的表现。 本段落提出了一种基于主动轮廓模型改进后的图像分割方法。该方法首先采用多步骤方向策略来扩大初始轮廓的范围并获得更精确边缘定位;其次,将拉普拉斯算子分解为切线和法向分量,以此减弱边界平滑效果,并引入两个自适应权重函数以根据局部特征动态调整模型参数。 通过主观与客观评估表明,所提出的改进方法在现有先进图像分割技术中表现出色。其关键点包括: 1. 多步骤方向策略:提高对初始轮廓的精确调节。 2. 拉普拉斯算子分解:减少边界平滑导致的信息丢失。 3. 自适应权重函数:使模型能够根据局部特征自适应调整参数,提升分割精度。 4. GVF与GGVF技术应用:优化了起始位置敏感性、防止信息遗漏及增强凹形边缘捕捉能力。 改进后的主动轮廓模型图像分割方法显著提升了图像分割的准确性和鲁棒性。该方法不仅适用于图像分割任务,在目标跟踪和边缘检测等领域同样具有广泛应用前景,充分展现了主动轮廓模型在计算机视觉与图像处理领域的潜力和发展趋势。