Advertisement

机构运动仿真及MATLAB与Simulink应用(周进雄译)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本书由周进雄翻译,详细介绍了如何使用MATLAB和Simulink进行机构运动仿真的方法和技术。适合工程技术人员参考学习。 机构动态仿真使用MATLAB和Simulink由周进雄翻译。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 仿MATLABSimulink
    优质
    本书由周进雄翻译,详细介绍了如何使用MATLAB和Simulink进行机构运动仿真的方法和技术。适合工程技术人员参考学习。 机构动态仿真使用MATLAB和Simulink由周进雄翻译。
  • MATLABSimulink在四连杆仿中的示例
    优质
    本示例展示了如何利用MATLAB和Simulink进行四连杆机构的动力学建模及运动仿真,包括模型搭建、参数设置以及结果分析。 Matlab机构运动仿真Simulink实例——四连杆机构
  • MATLABSimulink在四连杆仿中的实例.zip
    优质
    本资源提供了一个利用MATLAB和Simulink进行四连杆机械系统运动仿真的具体案例。通过此例,学习者可以掌握如何建立数学模型、编写代码以及创建动态仿真,从而深入了解该软件在工程设计与分析中的强大功能。 Matlab机构运动仿真Simulink实例——四连杆机构
  • MATLABSimulink在四连杆仿中的实例.zip
    优质
    本资源提供了一个使用MATLAB和Simulink进行四连杆机械结构运动仿真的实际案例。通过详细的模型建立、参数设定及动态模拟,帮助学习者深入理解多体动力学分析与仿真技术。 Matlab机构运动仿真Simulink实例——四连杆机构
  • MATLABSimulink在四连杆仿中的实例-MATLAB.zip
    优质
    本资源提供了一个使用MATLAB和Simulink进行四连杆机械系统动力学仿真的案例。通过下载的ZIP文件,用户可以获取详细的代码、模型及相关文档,便于学习与实践机械设计及模拟技术。 在本资源中,我们将探讨使用MATLAB的Simulink工具进行四连杆机构运动仿真的一个实例。MATLAB是一款强大的数学计算软件,而Simulink是其扩展模块,专用于动态系统建模与仿真。四连杆机构是一种常见的机械装置,在汽车引擎、机器人手臂等机械设备中广泛应用。 四连杆机构由四个相互连接的杆件组成,通常包括两个固定杆和两个活动杆,它们通过铰链形成闭合链条结构。在MATLAB Simulink中,我们可以构建模型来模拟这种机构的运动特性,如角度变化、速度及加速度等。 进行四连杆机构仿真前需掌握Simulink的基本操作。Simulink提供图形化建模界面;用户可通过拖拽模块并连接它们来创建模型。此实例所需可能包括信号源(初始角度或速度)、数学运算模块(正弦函数、积分器)及传递函数模块,用于描述连杆间动力学关系。 四连杆机构的动力学分析涉及牛顿第二定律和欧拉-拉格朗日方程,在Simulink中可通过适当组合实现。需考虑每个连杆的质量、长度、转动惯量以及连接处的摩擦力与驱动力等因素,并转换为系统输入输出。 定义各关节运动约束是建立四连杆机构模型的关键步骤,通常涉及坐标变换(如从笛卡尔到极坐标)及关节角计算。Simulink中的“连杆”模块可实现这一转换并调整几何属性参数设置。 通过仿真运行模型后,观察记录结果至关重要。Simulink提供实时和离线仿真的选项;在过程中可以观测各连杆的角度变化、速度和加速度曲线以分析机构动态行为。 通过对仿真结果的评估,我们可以判断四连杆机构的设计是否满足预期性能指标(如运动范围、稳定性及效率)并进行优化调整。此实例为学习者提供了实践机会,并有助于提高解决实际工程问题的能力。理论知识与实践操作相结合是掌握复杂系统分析的关键。
  • 器人械臂仿
    优质
    《雄克机器人机械臂运动仿真》一文深入探讨了使用仿真的方法来优化雄克机器人的机械臂在各种应用场景中的运动控制与性能表现。 使用MATLAB仿真建立一个五关节的Schunk机械臂DH参数模型,并在空间中对八个目标点位置进行运动仿真。
  • power_svc_SVC仿matlab simulink
    优质
    本课程聚焦于Power SVC(静止同步补偿器)的SVC仿真技术及其在MATLAB Simulink环境下的应用实践,深入探讨电力系统中动态无功功率控制与电能质量改善。 关于在R2015a版本的Simulink中进行POWER_SVC仿真的内容。
  • MATLAB/Simulink器人仿的研究.pdf
    优质
    本论文探讨了使用MATLAB和Simulink工具箱对机器人运动学仿真技术的研究与应用,旨在通过建模分析优化机器人系统设计。 基于MATLAB/Simulink 的机器人运动学仿真研究了如何利用Simulink环境进行机器人运动学的建模与仿真,通过该工具可以有效地分析机器人的关节运动、姿态变换以及路径规划等问题。这种方法为机器人设计提供了直观且高效的验证手段。
  • 基于MATLAB/Simulink的曲柄连杆学分析仿
    优质
    本研究运用MATLAB/Simulink工具对曲柄连杆机构进行深入的运动学分析及动态仿真,旨在探索该机构在不同参数下的运行特性。 为了简化整体分析法的复杂建模与运算过程,将曲柄连杆机构分解为曲柄及RRR型Ⅱ级杆组两个基本单元,并分别推导了这两个部分的运动学矩阵表达式。同时编写了相应的M函数,在MATLAB/Simulink仿真环境中建立了位移、速度和加速度分析模块,实现了对关键点位移、角速度以及加速度曲线的绘制与解析工作。该仿真模型具有建立简便快捷且易于扩展的优点。
  • 基于MATLAB-Simulink的四轮转向仿分析.pdf
    优质
    本文利用MATLAB-Simulink软件对四轮转向系统进行建模和仿真,详细分析了其运动特性及控制性能,为车辆动态稳定性优化提供了理论依据和技术支持。 根据运动学相关理论,在前轮转向二自由度汽车模型的基础上建立了四轮转向汽车的数学模型,并使用MATLAB/Simulink软件进行建模。通过在匀速直线行驶条件下设定方向盘转角作为仿真条件,观察了两种转向机构(即前轮转向和四轮转向)下横摆角速度及质心侧偏角的变化特点并进行了对比。 仿真的结果显示,在低速状态下,采用四轮转向系统的汽车前后轮同时进行逆向运动时,其提供的横摆角速度比仅使用前轮转向系统更大。此外,该系统的质心侧偏角能在短时间内稳定为零,并且能够减小转弯半径、提高灵活性;而在高速行驶条件下,则是前后轮同步进行同向运动,在这种情况下四轮转向汽车的横摆角速度低于传统前轮转向模式下的水平,但最终其质心侧偏角同样会趋于并保持在零值附近。这表明装备了四轮转向系统的车辆相比仅配置有前轮转向装置的车型具有更好的操纵稳定性和驾驶性能。