
2023年第八届数维杯大学生数学建模竞赛A题.pdf
5星
- 浏览量: 0
- 大小:None
- 文件类型:PDF
简介:
本资料为2023年第八届数维杯大学生数学建模竞赛A题官方文档,包含问题陈述、数据及附件。适合高校学生参与数学建模比赛学习和实践使用。
本段落探讨了基于数学建模的河流-地下水系统中的水体污染问题研究方法。通过建立数学模型来分析有机污染物在该环境下的行为,包括对流、弥散、吸附以及生物降解过程。
首先,在河流-地下水系统的迁移机制中,对流是主要的一种方式。通过对流试验参数(如平均孔隙流速、渗透系数等)的测量和研究,可以更好地理解污染物如何通过水流移动。
其次,有机污染物在系统中的另一重要迁移机理为弥散作用。利用相关实验数据测定弥散系数及其他关键因素有助于深入解析这一过程的影响机制。
再者,在吸附过程中,不同沉积物对特定浓度下的有机污染物质的吸收能力是研究重点之一。这需要通过等温平衡吸附试验来获取具体的数据和信息,包括时间点上固液相污染物浓度的变化情况。
此外,生物降解作为有机污染物转化的重要途径也被纳入考量范围之内。考虑到这一因素有助于更全面地评估系统内有机污染物质的自然消减能力及其环境效应。
最后,通过构建数学模型可以有效地模拟并预测河流-地下水环境中有机污染物的行为特征、迁移路径及影响因子等关键信息,从而为相关领域的科学研究和实践应用提供有力支持。
全部评论 (0)
还没有任何评论哟~


